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Abstract	(Greek)	

(An	abstract	in	English	follows)	

Αυτή	η	 εργασία	 εισάγει	 την	 έννοια	 της	αποκεντρωμένης	ανώνυμης	αγοράς.	Μελετάμε	 τη	

φύση	 τέτοιων	 αγορών	 και	 παρουσιάζουμε	 την	 υλοποίηση	 μίας	 συγκεκριμένης	 τέτοιας	

αγοράς	 την	 οποία	 ονομάζουμε	 OpenBazaar.	 Στη	 συνέχεια	 επικεντρώνουμε	 την	 προσοχή	

μας	στη	μελέτη	των	εννοιών	της	ασφάλειας	και	της	εμπιστοσύνης	μίας	τέτοιας	αγοράς.	

Εξερευνούμε	τις	επιπτώσεις	ασφάλειας	που	έχουν	η	αποκεντροποίηση	και	η	ανωνυμία	

και	προτείνουμε	πολλούς	μηχανισμούς	που	επιτυγχάνουν	εμπιστοσύνη.	Οι	προτάσεις	μας	

περιλαμβάνουν	 παραδοσιακές	 τεχνικές	 για	 ανάπτυξη	 ασφαλούς	 λογισμικού	 τις	 οποίες	

εφαρμόσαμε	 στην	 πράξη	 στην	 υλοποίησή	 μας.	 Προτείνουμε	 επίσης	 τη	 χρήση	 ενός	

δικτυακού	επιπέδου	που	διατηρεί	την	ανωνυμία.	

Πιο	 σημαντικά,	 εξερευνούμε	 πώς	 μηχανισμοί	 κρυπτονομισμάτων	 μπορούν	 να	

επιτύχουν	 εμπιστοσύνη	 χωρίς	 την	 ανάγκη	 κεντρικών	 έμπιστων	 αρχών,	 μέσα	 από	 τους	

συγκεκριμένους	 μηχανισμούς	 διαιτησίας,	 multisigs	 (πολλαπλών	 υπογραφών),	 και	

αμοιβαίως	εγγυημένης	καταστροφής.	Οι	κρυπτογραφικές	και	παιγνιοθεωρητικές	ιδιότητες	

τέτοιων	 σχημάτων	 μελετώνται	 και	 μία	 υλοποίηση	 χρησιμοποιώντας	 το	 bitcoin	

παρουσιάζεται.	Προτείνουμε	επίσης	νέες	επιθέσεις	σε	τέτοια	σχήματα.	

Η	 συμβολή	 μας	 περιλαμβάνει	 πολλούς	 μηχανισμούς	 επιτυχίας	 εμπιστοσύνης.	

Εισάγουμε	 μία	 νέα	 μορφή	 web-of-trust	 στο	 οποίο	 πολλαπλασιαστικοί	 κανόνες	

χρησιμοποιούνται	για	την	επίτευξη	μεταβατικής	εμπιστοσύνης,	ενώ	η	αποκεντροποίηση,	η	

ασφάλεια	 και	 η	 ανωνυμία	 διατηρούνται.	 Εξερευνούμε	 τις	 ιδιότητες	 ανωνυμίας	 και	

ασφάλειας	 τέτοιων	 webs-of-trust	 και	 συζητάμε	 επιθέσεις	 διαχωριστών.	 Η	 συμβολή	 μας	

επίσης	 περιλαμβάνει	 μηχανισμούς	 proof-of-burn	 για	 τη	 δημιουργία	 ταυτοτήτων	 για	 το	

οποίο	 παρέχουμε	 μία	 υλοποίηση.	 Τέλος,	 συμβάλλουμε	 επίσης	 με	 την	 ανώνυμη	

αποκεντρωμένη	 ονοματοδοσία	 μαγαζιών,	 για	 την	 οποία	 παρέχουμε	 μία	 Namecoin	

υλοποίηση.	

	 	



14	

Abstract	

This	work	introduces	a	decentralized	anonymous	marketplace.	We	study	the	nature	of	such	

marketplaces,	 and	we	present	 our	 implementation	of	 a	 practical	 such	marketplace	which	

we	 call	 OpenBazaar.	We	 then	 focus	 our	 study	 on	 the	 security	 and	 trust	 aspect	 of	 such	 a	

marketplace.	

We	 explore	 the	 security	 implications	 of	 decentralization	 and	 anonymity,	 and	propose	

several	 mechanisms	 to	 achieve	 trust.	 Our	 proposals	 include	 traditional	 secure	 software	

development	mechanisms,	which	we	 have	 applied	 in	 practice	 in	 our	 implementation.	We	

also	propose	the	use	of	an	anonymity-preserving	transport	layer.	

More	importantly,	we	explore	how	cryptocurrency	mechanisms	can	be	used	to	achieve	

trust	 without	 the	 need	 of	 central	 third	 parties,	 through	 the	 particular	 mechanisms	 of	

arbitration,	 multisigs,	 and	 mutually	 assured	 destruction.	 The	 cryptographic	 and	 game	

theoretic	properties	of	such	schemes	are	explored,	and	an	implementation	using	bitcoin	is	

studied.	We	also	propose	novel	attacks	on	these	schemes.	

Our	contribution	 includes	several	mechanisms	of	achieving	 trust.	We	 introduce	a	new	

form	 of	 web-of-trust	 in	 which	 multiplicative	 rules	 are	 used	 for	 trust	 transitivity,	 while	

decentralization,	 security,	 and	 anonymity	 are	 preserved.	 We	 explore	 the	 anonymity	 and	

security	properties	of	such	webs-of-trust	and	discuss	separation	attacks.	Our	contribution	

also	includes	the	use	of	proof-of-burn	mechanisms	to	build	identities,	for	which	we	provide	

an	 implementation.	 Finally,	 we	 also	 contribute	with	 anonymous	 decentralized	 naming	 of	

stores,	for	which	we	also	provide	an	implementation	using	Namecoin.	
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Introduction	

Marketplaces	

A	marketplace	is	a	location	where	goods	and	services	can	be	exchanged,	swapped	between	

each	other	directly,	or	for	money.	The	participants	 in	a	marketplace	are	the	buyer,	who	is	

interested	in	purchasing	a	product	and	the	seller	who	is	interested	in	offering	a	product	to	

the	market.	

Marketplaces	can	exist	offline	or	online.	Examples	of	popular	offline	marketplaces	are	

flea	 markets	 or	 shopping	 centers.	 Examples	 of	 popular	 online	 marketplaces	 are	

alibaba.com,	a	popular	e-shop	in	Asia,	amazon.com,	an	online	bookstore,	and	ebay.com,	an	

e-shop	 where	 buyers	 and	 sellers	 can	 transact	 between	 each	 other.	 Two	 other	 examples	

include	Google’s	Play	Store	and	Apple’s	AppStore,	two	online	stores	for	mobile	applications.	

We	are	concerned	about	online	marketplaces.	

Traditionally,	marketplaces	have	exhibited	various	desirable	qualities.	We	will	explore	

the	properties	of	decentralization,	censorship-resistance,	and	anonymity.	

Decentralization	

Centralization	 and	 decentralization	 are	 critical	 characteristics	 of	 an	 online	 service.	

Traditional	 networking	 literature	 has	 concentrated	 on	 the	 networking	 portion	 of	 such	

systems.	 As	 decentralized	 systems	 are	 becoming	 prevalent	 and	 are	 having	 important	

political	impact	as	they	evolve,	we	feel	it	is	time	to	redefine	certain	terms.	We	will	make	a	

distinction	between	the	network	structure	of	a	system	and	the	technical	ownership	structure	

of	a	system.	

A	centralized	network	service	is	a	service	which	follows	the	client/server	architecture.	

One	server	serves	all	clients,	and	the	server	is	in	this	way	a	distinguished	privileged	node.	

This	server	could	be	owned	and	operated	by	a	company,	and	in	addition	constitutes	a	single	

point	of	failure	of	the	system;	if	the	server	is	shut	down,	the	network	shuts	down.	Examples	

of	centralized	systems	include	traditional	web	sites.	

A	hierarchical	network	 service	 is	 a	 service	 similar	 to	 centralized	networks,	 except	 the	

centralization	 is	hierarchical.	 Instead	of	a	 single	 server	 serving	everyone,	 the	workload	 is	

offloaded	to	sub-servers	of	any	depth,	which	then	serve	clients.	If	any	of	them	goes	down,	

only	a	part	of	 the	network	goes	down,	and	thus	the	network	 is	somewhat	resilient.	 In	the	

networking	 literature,	 these	 networks	 are	 described	 as	 “decentralized”.	 However,	 in	 the	

context	of	decentralized	ownership	systems	such	as	bitcoin	and	OpenBazaar,	we	will	use	the	

community	definition	of	decentralization,	which	we	define	below,	and	we	will	reserve	the	
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term	“hierarchical”	 to	mean	 these	systems.	There	are	still	 single	points	of	 failure	 in	 these	

systems;	if	the	root	node	of	the	hierarchical	tree	is	brought	down,	the	whole	system	can	be	

shut	down.	Examples	of	such	systems	are	web	sites	that	operate	load	balancing	systems	to	

split	up	the	workload.	In	these	cases,	the	server	nodes	are	still	distinguished	and	different	

from	 the	 clients.	 Federated	 networks	 often	 have	 this	 form;	 for	 example,	 XMPP,	 diaspora,	

and	 IRC	 allow	 servers	 operated	by	different	 owners	 to	 communicate	with	 each	other.	An	

important	property	of	these	protocols	is	that	the	servers	trust	the	peers	they	are	connected	

to.	

In	 addition	 to	 network	 topology,	 we	 will	 now	 distinguish	 systems	 based	 on	 their	

ownership	characteristics.	

A	network	or	service	which	is	owned	and	operated	by	a	well-defined	party,	which	can	

be	an	individual,	a	company,	or	a	group	of	companies	or	individuals	working	together	is	a	

system	of	centralized	ownership.	 In	a	centralized	market,	 the	controlling	owner	 is	a	 third-

party	other	than	the	buyers	and	sellers	transacting	within	it.	For	example,	in	Google’s	Play	

Store,	the	market	is	owned	and	operated	by	Google,	even	though	buyers	are	end-users	and	

sellers	 are	 developers	 of	 apps.	 These	 developers	 can	 be	 different	 from	 Google,	 but	 the	

market	 is	 still	 centralized.	 Centralized	 ownership	 systems	 can	 have	 any	 network	 form	

above;	 they	 can	 be	 centralized	 network,	 hierarchical	 network,	 or	 distributed	 network	

systems.	 For	 example,	 Skype	 is	 a	 centrally	 owned	 system	 which	 is	 structured	 in	 a	

distributed	network.	The	 fact	 that	Microsoft	 can,	 in	principle,	 control	 all	 the	nodes	 in	 the	

system	 and,	 for	 example,	 block	 users	 by	 using	 a	 command	 signed	 with	 the	 operator’s	

private	key	if	they	are	served	a	warrant,	is	what	makes	ownership	centralized.	

Decentralized	systems	are	not	owned	by	any	party.	For	example,	in	offline	markets,	flea	

markets,	 or	 bazaars,	 often	 exhibit	 this	 property:	 Bazaars	 are	 locations	where	 traders	 can	

simply	meet	up	and	sell	or	buy	goods.	They	are	not	operated,	owned,	or	controlled	by	any	

party.	

A	critical	property	of	decentralization	 is	 the	 lack	of	centralized	control.	As	 there	 is	no	

owner,	 there	can	be	no	decision	making	 in	who	participates	 in	 the	market.	Therefore,	 the	

market	 is	 necessarily	 open	 to	 anyone	 willing	 to	 participate.	 This	 makes	 decentralized	

markets	naturally	resistant	to	censorship.	As	there	is	no	owner,	censorship,	and	in	general	

any	 legal	 orders,	 have	 to	 be	 executed	 in	 a	 case-by-case	 basis	 by	 individual	 buyers	 and	

sellers.	 This	 is	 true	 for	 all	 decentralized	 systems.	 Examples	 of	 decentralized	 systems	 are	
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bitcoin,	 OpenBazaar,	 Twister,	 Freenet,	 i2p,	 BitTorrent,	 PopCorn	 Time,	 Tor1	 and	 Gnutella.	

Decentralized	 ownership	 systems	 are	 necessarilly	 structured	 in	 a	 distributed	 network	

manner.	As	they	do	not	have	a	single	point	of	failure	and	are	not	susceptible	to	control	by	an	

individual	party,	even	if	a	legal	order	is	served,	we	say	that	such	systems	enjoy	sovereignty;	

they	are	the	equivalent	of	nation-states,	but	in	the	Internet	realm.	

A	 contrast	of	 centralized	and	decentralized	 systems	 is	 shown	 in	Figure	1:	Centralized	

and	Decentralized	.	On	the	left-side,	a	centralized	network	centralized	ownership	system	is	

shown.	A	designated	node,	highlighted	 in	black,	 is	superior	to	the	other	network	nodes	 in	

that	they	have	special	ownership	rights	on	the	network.	As	the	gatekeeper	of	the	network,	

they	must	authorize	all	transactions	between	regular	nodes	which	directly	connect	to	them.	

The	black	node	can	be	ordered	to	shut	down,	taking	the	system	down	with	it.	On	the	right,	

the	gatekeeper	node	is	gone,	and	the	nodes	connect	directly	to	each	other.	In	addition	to	the	

peer-to-peer	 network	 connetivity,	 the	 system	 has	 no	 central	 owner	 who	 can	 decide	 and	

censor	 participation	 in	 the	 system.	 It	 is	 a	 distributed	 network	 decentralized	 ownership	

system,	simply	referred	to	as	a	decentralized	system	in	the	cryptocurrency	communities.	

	

	

Figure	1:	Centralized	and	Decentralized	systems	

	

This	distinctive	feature	deserves	an	example.	If	Google’s	Play	Store	is	found	to	contain	

illegal	 content,	 a	 subpoena	or	 other	 form	of	 court	 order	 can	be	used	by	 a	government	 to	

order	 the	 operator,	 Google,	 to	 remove	 certain	 content	 from	 their	 marketplace.	 In	

decentralized	markets,	as	there	is	no	owner,	the	court	order	has	to	be	delivered	directly	to	

the	merchant	or	buyer.	Decentralization	makes	it	technically	impossible	to	impose	central	

																																																																				

1	Tor,	i2p,	BitTorrent,	and	PopCorn	Time	are	not	always	completely	distributed	due	to	

indexing	 services	 such	 as	 torrent	 trackers	 or,	 worse,	 aggregators	 like	 ThePirateBay	

sometimes	being	centralized.	
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control.	 No	matter	what	 laws	 are	 put	 in	 place,	 the	 decentralized	 system	will	 resist	 court	

orders.	 Decentralized	 systems	 are	 also	 resistant	 even	 to	 their	 own	 developers	 when	 it	

comes	to	censorship.	

Conversely,	if	a	censorship	attempt	is	made,	this	means	that	a	controlling	party	can	get	

to	 decide	 which	 good	 can	 be	 sold	 and	 which	 cannot.	 Therefore,	 traditional	 censorship	

requires	centralization.	

Decentralization	 also	 implies	 that	 fees	 cannot	 be	 imposed	 on	 the	 system.	 If	 a	 fee	

structure	is	employed	in	the	system,	it	cannot	be	enforced	by	anyone,	as	there	is	no	owner.	

Even	if	the	developers	include	code	that	allows	them	to	collect	fees,	this	code	can	be	easily	

removed	by	participating	parties.	

Anonymity	and	pseudonymity	

Anonymity	 in	 a	 marketplace	 ensures	 that	 the	 participants	 of	 the	 marketplace	 remain	

anonymous.	We	 define	 anonymity	 similarly	 to	 how	Tor	 defines	 anonymity:	 Anonymity	 is	

preserved	when	actions	 cannot	be	attributed	 to	 the	physical	person	performing	 them.	As	

the	definition	is	broad	and	abstract,	a	specific	threat	model	is	required	to	indicate	whether	

anonymity	is	preserved.	

Pseudonymity	is	a	concept	similar	to	anonymity.	In	a	pseudonymous	setting,	anonymity	

is	maintained,	 but	 the	 anonymous	 actions	 are	 associated	with	 a	 pseudonym,	 and	 various	

actions	 can	 be	 correlated:	 It	 is	 revealed	 that	 certain	 actions	 were	 taken	 by	 the	 same	

pseudonym,	and	this	pseudonym	can	carry	a	reputation.	

Pseudonyms	 are	 not	 necessarily	 associated	 one-to-one	 with	 a	 physical	 identity.	 A	

physical	person	may	not	have	a	pseudonym,	or	may	have	multiple	ones.	A	pseudonym	may	

be	controlled	by	multiple	physical	entities,	for	example	by	a	group	of	people.	A	pseudonym	

may	also	be	abandoned	by	its	physical	owner	to	create	a	new	one,	which	is	not	associated	

with	the	original,	because	the	activity	of	the	pseudonym	remains	anonymous	(in	addition	to	

pseudonymous).	

Pseudonyms	 may	 also	 be	 owned	 by	 software	 and	 do	 not	 necessarily	 have	 a	 human	

owner.	 In	 the	 particular	 case	 of	 decentralized	 systems,	 a	 pseudonym	may	 be	 associated	

with	a	network	where	no	central	control	of	the	pseudonym	exists	at	all,	which	allows	it	to	

enjoy	 sovereign	 rights.	 An	 example	 of	 one	 system	 where	 such	 construction	 becomes	

possible	is	Ethereum.	
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A	decentralized	anonymous	marketplace	

We	 introduce	 a	 decentralized	 anonymous	marketplace	 called	OpenBazaar.	 This	 system	 is	

the	 collaborative	 work	 of	 the	 OpenBazaar	 team.	 Our	 contribution	 to	 OpenBazaar	 was	 to	

create	the	marketplace	from	scratch	in	collaboration	with	the	rest	of	the	OpenBazaar	team.	

In	 the	 current	work,	we	 illustrate	 our	 contributions	 to	 the	 trust	 and	 security	 portions	 of	

OpenBazaar,	which	we	consider	a	foundational	portion	of	it.	

Our	contributions	

At	 this	 point,	 we	would	 like	 to	 state	 that	 some	 of	 the	 current	work	 is	 descriptive,	 while	

some	is	normative.	

The	 following	 properties	 are	 studied	 in	 this	work,	 but	 are	 not	 our	 contributions.	We	

simply	 describe	 them	 here,	 as	 we	 consider	 them	 an	 important	 portion	 of	 the	 trust	 and	

security	mechanisms:	

1) The	 2-of-2	 and	 2-of-3	 multisig	 use	 was	 invented	 in	 the	 bitcoin	 community	 and	

implemented	for	OpenBazaar	by	Brian	Hoffman.	

2) The	MAD-style	 transaction	was	 invented	and	used	elsewhere.	 It	was	 first	proposed	to	

be	used	in	bitcoin	in	NASHX.	

3) The	ricardian	contracts	were	 invented	 in	various	 settings	and	modified	and	extended	

for	the	OpenBazaar	implementation	by	Washington	Sanchez.	

We	have	made	several	contributions	in	this	work.	Our	contributions	specifically	include:	

1) The	 suggestion	 to	use	2-of-2	and	2-of-3	multisig	 for	 a	decentralized	marketplace	was	

introduced	 in	 (Zindros,	 2014).	 The	 game-theoretic	 study	 of	 the	 various	 transaction	

schemes,	 including	 the	 formulation	 for	 the	 2-of-2	 and	 2-of-3	 multisig	 is	 also	 our	

contribution.	

2) The	 use	 of	 MAD	 using	 purely	 a	 bitcoin	 schema	 and	 its	 game-theoretic	 analysis	 in	

comparison	to	traditional	multisig,	including	the	ability	for	arbitration.	

3) The	transitive	web-of-trust	using	multiplicative	rules	and	maintaining	anonymity.	

4) The	use	of	namecoin	for	naming	stores,	including	an	implementation.	

5) The	separator	attack	against	a	multiplicative	web-of-trust.	

6) The	vendor-in-the-middle	information-stealing	and	money-stealing	attack.	

7) The	 novel	 proof-of-burn	 using	 perturbations	 to	 build	 an	 identity,	 including	 an	

implementation.	
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History	

Webs-of-trust	

Webs-of-trust	are	traditionally	a	means	to	verify	ownership	of	encryption	and	signing	keys	

by	 a	 particular	 individual	whose	 real-world	 identity	 is	 known.	 The	 first	widely	 deployed	

web-of-trust	 is	 the	 GPG/PGP	 web-of-trust	 (Zimmerman,	 1995).	 In	 these	 webs-of-trust,	 a	

digital	 signature	 on	 a	 public	 key	 is	 employed	 to	 indicate	 a	 binding	 between	 a	 digital	

cryptographic	 key	 and	 an	 identity.	 Such	 a	 digital	 signature	 does	 not	 designate	 trust,	 but	

only	signifies	that	a	particular	real-world	individual	is	the	owner	of	a	digital	key.	

Webs-of-trust	 have	 also	 been	 utilized	 for	 different	 purposes	 in	 various	 experimental	

settings.	 In	 Freenet	 (Clarke,	 Sandberg,	Wiley,	 &	 Hong,	 2001),	 it	 is	 used	 to	 guard	 against	

spam	 (Freenet	 Web	 Of	 Trust).	 In	 a	 commercial	 setting,	 the	 Bitcoin	 OTC	 web-of-trust	

successfully	 attempts	 a	 centralized	 approach	 to	 establish	 a	 true	 trust	 network	 (Grinberg,	

2011),	contrasting	identity-only	verification	webs-of-trust	of	the	past.	

Economic	origins	of	money	and	trade	

In	his	nominal	work	preceding	the	invention	of	bitcoin,	Szabo	(Szabo,	2005)	describes	the	

origin	of	money	and	trade.	The	value	of	money	 is	explored	and	understood	as	a	means	of	

exchange.	As	money	is	valued	through	its	exchange	value	and	not	necessarily	by	some	other	

backing,	 it	 is	 understood	 that	 bitcoin	 also	 gains	 its	 value	 from	 its	 ability	 to	 be	 used	 and	

exchanged.	 As	 such,	we	 expect	 bitcoin’s	 value	 to	 be	 closely	 associated	with	 the	 exchange	

ability,	usability,	and	security	of	online	marketplaces	such	as	OpenBazaar.	

It	 is	 interesting	 to	 observe	 that	 traditional	money	 shared	many	 important	 properties	

with	the	modern	form	of	bitcoin,	especially	as	augmented	by	online	marketplaces.	A	quote	

from	the	original	work	is	revealing:	

“To	 be	 useful	 as	 a	 general-purpose	 store	 of	 wealth	 and	 means	 of	 wealth	 transfer,	 a	

collectible	had	to	be	embedded	in	at	least	one	institution	with	a	closed-loop	cycle,	so	that	the	

cost	 of	 discovering	 and/or	 manufacturing	 the	 object	 was	 amortized	 over	 multiple	

transactions.	 It	 had	 to	 have	 certain	 functional	 properties,	 such	 as	 the	 security	 of	 being	

wearable	 on	 the	 person,	 compactness	 for	 hiding	 or	 burial,	 and	 unforgeable	 costliness.	 That	

costliness	must	have	been	verifiable	by	the	recipient	of	the	transfer	--	using	many	of	the	same	

skills	that	collectors	use	to	appraise	collectibles	today.”	

The	closed-loop	cycle	properties	of	bitcoin,	while	already	existent,	will	be	substantially	

extended	by	a	marketplace	which	shares	the	same	principles	as	the	coin.	The	properties	of	
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security,	 compactness,	 and	 unforgeability	 are	 also	 parts	 of	modern	 cryptocurrencies	 and	

their	historical	study	is	unmistaken.	

Bitcoin	 as	 an	 exchange	 medium	 is	 based	 on	 the	 idea	 that	 a	 currency	 can	 be	 purely	

virtual.	There	 is	no	 inherent	 value	 in	bitcoin	other	 than	 its	 exchange	value.	 Its	 scarcity	 is	

backed	by	computing	power.	It	 is	understood	that	any	medium,	physical	or	virtual,	can	be	

used	 as	 a	 medium	 of	 exchange,	 as	 long	 as	 there	 is	 an	 implicit	 agreement	 for	 this	 and	

provided	 it	 cannot	 be	 copied	 arbitrarily.	 Bitcoin	 suggests	 the	 use	 of	 cryptographically	

secured	digital	information	as	money.	

The	trading	ability	used	in	traditional	collectibles	historically	has	evolved	through	peer-

to-peer	 exchanges.	 When	 markets	 became	 more	 popular,	 they	 evolved	 into	 bazaars,	

unofficial	 locations	where	merchants	would	gather	to	exchange	goods	or	services	without	

central	control.	These	trade	 locations	were	 lated	sometimes	centralized	and	controlled	by	

third	parties,	 including	 land	owners	 in	 feudal	ages,	or	countries	 through	 taxation	 in	more	

recent	years.	

Money	 evolved	 from	 collectibles	 such	 as	 shells	 to	 scarce	 commodities	 such	 as	 gold,	

where	 it	 remained	 decentralized	 in	 the	 sense	 that	 no	 central	 authority	 generated	 the	

money,	but	anyone	was,	in	principle,	able	to	mine	or	find	such	carriers	of	value.	

As	 the	 banking	 system	 evolved,	 the	 generation	 of	 money	 became	 centralized	 and,	 in	

recent	ages,	governments	are	controlling	the	supply	of	money	(European	Union,	2008).		

History	of	online	trade	

Since	 the	 invention	 of	 the	 Internet,	 e-commerce	 has	 evolved	 to	 become	 a	 major	 way	 of	

trading	and	has	dominated	traditional	trade.	Money	on	the	Internet	is	controlled	by	private	

corporations	 in	 the	 form	 of	 credit	 card	 companies	 and	 banks.	 Every	 payment	 and	 every	

transaction	 on	 the	 Internet	 is	 not	 only	 authorized	 by	 a	 credit	 card	 company,	 but	 also	

transparently	visible	and	censorable	as	such.	

This	 is	starting	 to	change	with	 the	 introduction	of	decentralized	currencies.	While	 the	

market	share	of	bitcoin	is	minuscule	compared	to	other	systems	of	online	payment,	it	is	in	

principle	now	possible	to	make	transactions	which	are	decentralized	and	uncensorable.	

The	two	foundational	requirements	for	making	online	trade	possible	are	money,	on	one	

side,	and	marketplaces	on	the	other.	Where	money	allows	the	representation	of	value	in	a	

trade,	marketplaces	allow	trade	discovery.	

Internet	marketplaces	started	in	a	centralized	fashion	as	well.	eBay,	Amazon,	the	Apple	

and	Google	app	stores,	and	iTunes	are	all	centralized	marketplaces.	While	eBay	allows	users	

to	sell	and	buy	from	each	other,	the	platform	itself	is	centrally	controlled	by	this	corporate	
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third	 party.	 Furthermore,	 all	 of	 these	 stores	 do	 not	 enable	 anonymity,	 as	 they	 require	

credit-card-based	payments.	

The	 first	 step	 towards	 anonymous	 marketplaces	 was	 made	 by	 the	 infamous	 yet	

innovative	dark	market	SilkRoad	(Justin	Norrie,	2011).	SilkRoad	operated	via	Tor	(Lee	N.	 ,	

2015)	and	allowed	anonymous	purchases	via	bitcoin.	It	focused	mostly	on	illegal	markets,	

in	particular	drugs.	After	 it	was	shut	down	by	 law	enforcement,	a	series	of	clones	popped	

up,	 including	 SilkRoad	 2	 (Greenberg,	 'Silk	 Road	 2.0'	 Launches,	 Promising	 A	 Resurrected	

Black	Market	For	The	Dark	Web,	2013)	,	TheMarketPlace	(Markowitz,	2013),	Agora	(Evans,	

2014),	Evolution	(Wired,	2015)	and	others.	

TheMarketPlace	in	particular	is	of	interest,	because	it	allowed	the	use	of	2-of-3	multisig	

bitcoin	 transactions,	 in	 which	 the	 buyer,	 the	 seller,	 and	 the	 market	 owner	 participated.	

Unfortunately,	 as	 key	 discovery	 happened	 through	 the	 marketplace	 itself,	 the	 central	

control	and	unverifiability	of	keys	made	this	experiment	a	failure.	

While	these	markets	exhibit	anonymity,	they	are	not	decentralized.	

History	of	OpenBazaar	

The	 idea	 of	 OpenBazaar	 is	 not	 new,	 but	 it	 was	 recently	 enabled	 by	 the	 invention	 of	

blockchain	 technologies	 such	 as	 bitcoin.	 The	 vision	 for	 a	 digital	 decentralized	 and	

anonymous	marketplace	has	a	long	history	in	the	cypherpunk	and	crypto	communities.	We	

see	 a	 clear	 mention	 of	 market	 contracts	 in	 Wei	 Dai’s	 bmoney	 post	 to	 the	 cypherpunk	

mailing	list	(Dai,	1998).	Wei	Dai	writes:	

“Until	 now	 it's	 not	 clear,	 even	 theoretically,	 how	 such	 a	 community	 could	 operate.	 A	

community	is	defined	by	the	cooperation	of	its	participants,	and	efficient	cooperation	requires	

a	medium	of	 exchange	 (money)	and	a	way	 to	enforce	 contracts.	Traditionally	 these	 services	

have	been	provided	by	the	government	or	government-sponsored	institutions	and	only	to	legal	

entities.	In	this	article	I	describe	a	protocol	by	which	these	services	can	be	provided	to	and	by	

untraceable	entities.”	

It	 is	 clear	 that	 the	 ideas	 of	 bitcoin	 and	 OpenBazaar	 are	 tightly	 intervened.	Wei	 Dai’s	

vision	 for	 bmoney,	 which	 later	 became	 bitcoin,	 includes	 the	 important	 ideas	 of	 contract	

enforcement.	 These	 mechanisms	 become	 possible	 through	 cryptography	 and	 through	

unbreachable	contracts.	Some	of	these	are	utilized	by	OpenBazaar	itself.	

The	connection	between	bitcoin	and	OpenBazaar	becomes	even	more	apparent	in	code	

included	 in	bitcoin	by	 its	 original	 author,	 Satoshi	Nakamoto.	 In	 the	prototypal	C++	 client,	

the	 source	 code	 includes	 an	 attempt	 to	 implement	 an	OpenBazaar-like	market.	However,	

presumably	 due	 to	 complexity	 associated	 with	 such	 an	 implementation,	 the	 code	 was	



25	

removed.	 Indeed,	 commit	 5253d1ab77fab1995ede03fb934edd67f1359ba8	 in	 the	 original	

bitcoin	source	code	is	exactly	this	removal	(Nakamoto,	Strip	out	unfinished	product,	review	

and	market	stuff,	2010).	It	would	not	be	surprising	to	think	that	Nakamoto	was	hoping	the	

OpenBazaar	project	would	become	a	stand-alone	project,	using	bitcoin	as	a	primitive.	

This	 idea	was	 picked	 up	 by	Arinich	 (Arinich,	 2013).	 Arinich	 explains	 the	 necessity	 of	

decentralizing	 online	 marketplaces	 and	 the	 motives	 behind	 Satoshi’s	 redacted	

implementation.	Motivated	by	the	failure	of	centralized	online	marketplaces,	he	introduced	

many	ideas	that	would	shape	the	world	of	decentralized	marketplaces,	including	the	use	of	

namecoin	and	arbitration.	Several	of	these	ideas	remain	high-level	descriptions,	however.	

In	 the	 meantime,	 Washington	 Sanchez	 and	 I	 independently	 explored	 the	 technical	

feasibility	 of	 these	 concepts.	 In	 my	 post	 to	 the	 LiberationTech	 mailing	 list	 in	 March	

(Zindros,	 2014)	 many	 technical	 details	 are	 explained	 and	 suggestions	 for	 particular	

technologies	 are	 made.	 The	 ideas	 of	 2-of-2	 and	 2-of-3	 multisigs,	 escrows,	 reputation	

systems,	 high-level	 descriptions	 of	 webs-of-trust,	 voluntary	 fee	 schedules	 for	 arbitration,	

proof-of-burn	 for	 identity	 verification,	 and	 timelock-based	 trust	 are	 introduced.	

Furthermore,	Tor	as	an	anonymity-supporting	transport	 layer,	bitmessage	as	a	messaging	

mechanism,	DHTs	as	a	storage	mechanism,	and	namecoin	for	identity	management	are	also	

suggested.	

After	we	 presented	 these	 ideas	 in	 the	 LiberationTech	mailing	 list	 in	March	 2014,	 the	

project	DarkMarket	was	 independently	 started	by	Amir	Taaki	and	his	unSYSTEM	team	 in	

April	 2014	 (Greenberg,	 Inside	 the	 DarkMarket	 Prototype,	 a	 Silk	 Road	 the	 FBI	 Can	Never	

Seize,	2014),	although	it	is	unknown	whether	they	were	aware	of	our	previous	work.	After	

the	 first	 quick	 and	 dirty	 implementation	 of	 DarkMarket,	 it	 was	 picked	 up	 and	 forked	 by	

Brian	 Hoffman,	 who	 then	 renamed	 it	 to	 OpenBazaar	 (Hern,	 2014).	 Brian	 Hoffman,	 Sam	

Patterson,	 Washington	 Sanchez	 and	 I	 joined	 forces	 to	 lead	 the	 effort	 in	 developing	

OpenBazaar	 as	 an	 open	 source	 project.	We	were	 joined	 by	more	 than	 80	 volunteers.	We	

share	 credit	 for	 the	 creation	 of	 OpenBazaar	 with	 them.	 The	 OpenBazaar	 was	 the	 first	

practical	implementation	that	solidified	these	ideas.	
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Primitives	

Blockchain	primitives	

While	decentralized	market	services	have	been	envisioned	for	decades,	it	has	only	recently	

become	possible	to	truly	realize	them.	The	basic	technology	that	has	made	this	possible	is	

the	invention	of	the	blockchain	primitive	in	cryptography	and	its	implementation	in	bitcoin	

(Nakamoto,	Bitcoin:	A	Peer-to-Peer	Electronic	Cash	System,	2008).	

Blockchain	 primitives	 are	 our	 primary	 mechanism	 for	 dispute	 resolution	 and	

unbreachable	 contracts.	 They	 allow	 arriving	 at	 consensus	 in	 a	 decentralized	 way,	 and	

enable	 unbreachable	 contract	 mechanisms	 such	 as	 2-of-2	 multisig,	 2-of-3	 multisig	 with	

arbitration,	and	MAD.	

As	 its	 importance	 to	 this	work	 is	 foundational	and	 the	exploration	of	 these	primitives	

has	 been	 limited	 as	 far	 as	 the	 academic	 community	 is	 concerned,	we	 spend	 an	 extensive	

amount	 of	 time	 discussing	 bitcoin	 and	 blockchain	 technologies	 in	 this	 work.	 These	

explanations	 are	 bibliographic	 and	 are	 based	 on	 the	 original	 bitcoin	 paper,	 the	 bitcoin	

developer	 guide	 (Bitcoin	 Developers),	 and	 previous	 work	 of	 the	 author.	 The	 acquainted	

reader	can	skip	the	next	sections.	

Hash	primitives	

Cryptographically,	 we	 require	 certain	 modifications	 to	 the	 traditional	 models	 of	 hash	

function	collision	 resistance.	The	new	collision-resistance	 requirements	are	near-collision	

resistance	and	range-collision	resistance.	These	are	required	for	the	hash	functions	SHA256	

and	 RIPEMD160.	 The	 near-collision	 requirement	 is	 already	 known	 in	 the	 cryptographic	

community.	For	example,	near-collision	properties	of	SHA0	have	been	extensively	explored	

(Biham	&	Chen,	2004).	

Near-collision	requires:	 It	 is	not	possible	 for	a	polynomial	agent	to	 find	x	and	y	under	

some	 key	 parameterization	 of	 a	 given	 hash-function	 H	 such	 that	 the	 Hamming	 distance	

between	H(x)	and	H(y)	is	below	a	given	threshold	requirement	ε.	Usual	collision	resistance	

can	 then	 be	 expressed	 as	 near-collision	 resistance	 setting	 ε	 =	 0.	 Therefore,	 near-collision	

resistance	requirements	are	stronger	than	traditional	collision	resistance.	More	formally:	

∀𝑃𝑃𝑇 𝒜 1! :𝑃 𝑥, 𝑦 ← 𝒜, 𝐻! 𝑥 − 𝐻! 𝑦 < 𝜀 ∈ 𝑛𝑒𝑔𝑙(𝜅)	

Near-collision	resistance	of	SHA512	is	required	for	one	of	our	proposed	proof-of-burn	

mechanisms.	 Of	 course,	 formalizing	 the	 near-collision	 requirement	 for	 SHA512	 is	 not	

possible,	as	it	is	not	a	keyed	hash	function.	
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Range-collision	resistance	is	a	different	requirement	imposed	by	blockchains.	It	extends	

traditional	 collision	 resistance	 as	 follows:	We	 require	 that,	 given	 some	 threshold	 value	 ε	

and	a	given	challenge	y,	it	is	not	possible	for	a	polynomial	agent	to	find	x	such	that	||H(x)	–	

y||	<	ε	under	some	keyed	parameterization	of	H	and	for	some	norm	on	the	output	space,	for	

example	 arithmetic	 distance.	 Setting	 ε	 =	 0	 produces	 the	 traditional	 collision	 resistance	

definitions.	More	formally:	

∀𝑦:∀𝑃𝑃𝑇 𝒜 1! :𝑃 𝑥 ← 𝒜, 𝐻! 𝑥 − 𝑦 < 𝜀 ∈ 𝑛𝑒𝑔𝑙(𝜅)	

Range-collision	resistance	for	an	image	of	y	=	0	is	required	for	the	security	of	bitcoin.	
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Bitcoin	

Bitcoin	 and	 blockchain	 primitives	 are	 used	 in	 OpenBazaar	 to	 enable	 unbreachable	

contracts.	 We	 chose	 Bitcoin	 as	 a	 payment	 system	 because	 it	 is	 the	 most	 stable	 among	

cryptocurrencies.	

For	 use	 in	 OpenBazaar,	 we	 considered	 several	 alternative	 cryptocurrencies.	 Some	

cryptocurrencies	were	considered	 for	 their	more	 favourable	properties,	 in	particular	as	 it	

pertains	 to	 unbreachable	 contracts.	 For	 example,	 Ethereum-like	 (Wood,	 2014)	

cryptocurrencies	could	have	been	used	to	achieve	better	unbreachable	contracts	due	to	the	

expressiveness	 of	 their	 Turing	 complete	 properties.	 However,	 these	 altcoins	 are	 quite	

unstable	and	experimental	at	the	moment,	and	did	not	allow	for	a	concrete	implementation.	

Turing	 completeness	 and	 storage	 facilitation	 possibly	 allow	 simpler	 implementations	 of	

decentralized	 marketplaces	 such	 as	 OpenBazaar.	 For	 example,	 trust	 and	 ratings	 can	 be	

stored	 in	decentralized	 stores	offered	by	 these	 cryptocurrencies,	 and	more	 complex	 trust	

mechanisms	such	as	time	locking	or	complicated	financial	reward	and	punishment	systems	

could	be	implemented.	More	research	and	development	is	needed	to	explore	these	options.	

Introduction	

Bitcoin	 is	 an	 experimental	 decentralized	 cryptocurrency,	 a	 monetary	 system	 without	

central	control	whose	integrity	is	based	on	the	foundations	of	cryptography.	In	the	current	

section,	 after	 we	 develop	 the	 problem	 and	 the	 reasons	 of	 existence	 of	 a	 decentralized	

cryptocurrency,	we	will	present	the	basic	operating	principles	of	the	system,	as	well	as	its	

foundation	from	an	economic	and	mathematical	point	of	view.	Some	technical	details	of	the	

protocol	and	the	intuition	of	correctness	and	completeness	will	be	presented,	but	without	

formal	mathematical	 proofs.	We	will	 illustrate	 the	 reasons	 the	 protocol	 is	 able	 to	 secure	

transactions,	avoid	unwanted	transactions,	and	achieve	anonymity.	The	goal	of	this	section	

is	 the	 presentation	 of	 the	 cryptocurrency	 and	 of	 the	 basic	 operating	 principles,	 and	 we	

attempt	 a	 complete	 description	 of	 the	 technical	 principles,	 but	 without	 getting	 into	

unnecessary	details.	Readers	already	acquainted	with	bitcoin	can	skip	this	section.	

The	problem	

In	the	crypto	community,	particularily	in	the	cypherpunk	community	(Manne,	2011),	there	

exist	 the	 desire	 to	 preventatively	 use	 cryptography	 to	 circumvent	 the	 ability	 of	 privacy	

intrusion	 from	states	or	other	actors	who	have	 the	ability	 to	eavesdrop	on	data	exchange	

transfers,	 legally	 or	 illegally	 (Hughes,	 1993).	 Traditional	 online	 payments	 today	 do	 not	

exhibit	 the	 advantages	 of	 offline	 payments.	 In	 particular,	 there	 is	 no	 ability	 to	 exchange	

money	anonymously,	as	all	online	transactions	take	place	through	specialized,	centralized	
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services	 who	 have	 access	 to	 the	 identity	 of	 their	 participants.	 Services	 such	 as	 PayPal	

require	to	know	the	identity	of	the	people	who	transact	and	so	anonymity	is	lost.	The	same	

is	true	for	all	sorts	of	electronic	payment	systems,	including	of	course	those	that	take	place	

using	credit	cards	and	which	require	services	such	as	Visa	and	Mastercard.	In	any	case,	it	is	

impossible	to	exchange	money	using	a	pseudonymous	identity,	as	it	is	required	to	validate	

the	 true	physical	 identity	 of	 someone	 through	 strict	mechanisms	 such	 as	 opening	 a	 bank	

account	which	requires	a	national	government-certified	identity	with	a	photograph,	as	well	

as	the	validation	of	one’s	place	of	residence,	with	the	small	exception	of	paysafe	cards	and	

similar	services.		

These	 services	 which	 offer	 the	 ability	 of	 online	 payments	 secure	 the	 transactions	 of	

their	participants,	but	do	not	allow	anonymous	transactions	such	as	those	possible	in	cash,	

and	in	addition	they	charge	a	small	fee	for	every	transaction,	making	it	impossible	to	trade	

very	small	amounts.	More	importantly,	these	centralized	services	excert	control	over	which	

transactions	are	valid	and	which	aren’t,	directly	censoring	transactions	and	accounts.	There	

are	 several	 serious	 cases	 in	 which	 PayPal	 has	 arbitrarily	 censored	 important	 causes	 or	

withheld	money	from	its	clients.	In	fact,	this	practice	is	so	habitual	that	there	is	a	surprising	

number	 of	 publicly	 documented	 cases,	 often	 related	 to	 politics	 and	 activism	 (Orlowski,	

Paypal	 freezes	 Cryptome,	 2010)	 (Orlowski,	 Cryptome:	 PayPal	 a	 'liar,	 cheat	 and	 a	 thug',	

2010)	 (Orlowski,	 PayPal	 says	 sorry	 to	 Cryptome,	 2010)	 (Morran,	 2011)	 (Smith,	 2010)	

(Addley	 &	 Halliday,	 2010)	 (Whitney,	 2011)	 (Corbin,	 2014)	 (Koetsier,	 2013)	 (Waxman,	

2011)	(Novak,	2013)	(Lokot,	2015)	(Dolgov,	2015)	(Freedom	House,	2015)	(The	New	York	

Times,	2003).	

Finally,	even	the	use	of	cash	or	traditional	fiat	currency	such	as	the	euro	and	the	dollar	

has	its	problems,	as	in	this	case	the	currency	is	produced	by	a	government,	with	the	ability	

of	 centralized	macroeconomic	 control	which	may	 or	may	not	 be	 desired	 by	 the	 currency	

users.	 Following	 the	 tradition	 of	 the	 cryptographic	 community	 in	 the	 preventative	 use	 of	

cryptographic	 technology	 without	 assuming	 any	 trust	 towards	 third	 parties	 such	 as	 the	

government,	current	systems	are	unsatisfactory.	

Solutions	that	have	emerged	to	solve	this	problem	in	various	times	are,	as	mentioned	in	

the	monetary	history	section,	the	use	of	gold	or	other	scarce	commodities	which	have	some	

inherent	value,	with	prices	determined	by	a	free	market.	However,	this	cannot	be	used	for	

online	payments,	as	it	has	limited	usability,	and	is	slow	and	insecure	due	to	the	possibility	

of	theft	or	loss.	

This	problem	was	the	motivation	for	the	search	of	a	better	solution	which	is	based	on	

digital	currencies.	
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Bitcoin	history	

Bitcoin	started	in	1998	when	Wei	Dai	published	in	the	famous	practical	cryptography	and	

anonymity	mailing	list	”cypherpunks”.	He	posted	a	sketch	where	he	explained	the	idea	with	

which	 an	 economy	 not	 requiring	 central	 control	 would	 be	 possible.	 Cypherpunks	 are	

known	 for	 their	desire	 to	use	cryptography	preventatively	 to	achieve	anonymity,	privacy,	

and	political	and	economic	change	through	software	engineering	(and	not	simply	academic	

exploration)	of	systems	whose	goal	is	to	be	used	widely	and	in	production.	Wei	Dai’s	sketch	

entitled	“bmoney”	(Dai,	1998)	set	the	foundation	for	the	development	of	Bitcoin.	

In	2009,	Satoshi	Nakamoto	developed	the	first	version	of	his	software	in	C++	and	at	the	

same	time	published	a	nominal	paper	with	the	title	“Bitcoin:	A	Peer-to-Peer	Electronic	Cash	

System”	 (Nakamoto,	 Bitcoin:	 A	 Peer-to-Peer	 Electronic	 Cash	 System,	 2008).	 That	 paper	

founded	the	theory	which	was	necessary	for	the	development	of	the	system	and	included	a	

short	mathematical	proof	of	the	security	of	the	system.	The	software	was	designed	not	only	

as	a	simple	proof-of-concept,	but	as	a	complete	production	system	aimed	to	scale,	a	move	

that	 follows	 the	cypherpunks	 tradition.	The	software	 is	open	source	and	published	under	

the	 MIT	 license,	 a	 tradition	 we	 also	 followed	 with	 OpenBazaar	 (see	 below).	 Satoshi	

Nakamoto	 suddenly	 disappeared	 after	 the	 completion	 of	 the	 first	 version	 of	 Bitcoin	

(Wallace,	 2011).	 Much	 speculation	 surrounds	 his	 person,	 as	 it	 is	 said	 –	 in	 the	 way	

traditional	among	cryptographers	–	that	due	to	paranoia	he	never	revealed	his	real	name,	

and	the	particular	identity	is	nothing	but	a	pseudonym.	Noone	has	met	him	in	person,	there	

is	no	information	about	him	or	even	a	picture.	He	claimed	to	be	of	Japanese	origin,	but	none	

of	his	writings	or	source	code	have	a	word	of	 Japanese.	There	have	been	numerous	 failed	

attempts	to	 identify	him	(Jeffries,	2011)	(Davis,	2011)	(Penenberg,	2011)	(Ormsby,	2013)	

(Markoff,	 2013)	 (Wile,	 2013)	 (Biggs,	 2013)	 (Greenberg,	 Bitcoin	 Community	 Responds	 To	

Satoshi	Nakamoto's	 'Uncovering'	With	Disbelief,	Anger,	Fascination,	2014)	(Winton,	2014)	

(Clinch,	2014)	(Frisby,	2014).	

The	Bitcoin	system	is	maintained	and	developed	today	in	open	source	form	through	the	

Bitcoin	developers	community.	

The	idea	behind	Bitcoin	

Bitcoin’s	 main	 goal	 is	 to	 solve	 the	 problem	 of	 central	 monetary	 policy.	 It	 allows	 fast	

payments	which	are	securely	confirmed	within	an	expected	10	minutes,	without	requiring	a	

trusted	third	party.	Its	value	emerges	from	the	free	market	as	a	commodity	which	exhibits	

the	requiements	of	a	good	exchange	medium	(see	“Origins	of	money”	above)	and	is	backed	

by	computing	power.	It	secures	transactions	using	modern,	provably	strong	cryptography,	

and	provides	anonymity	to	the	transating	parties.	
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Decentralization	

The	network	decentralization	in	bitcoin	is	achieved	using	a	peer-to-peer	network	to	which	

all	participants	who	wish	to	use	bitcoin	for	their	transactions	connect.	The	participants	run	

the	bitcoin	software	on	their	computer.	

This	 can	 be	 either	 the	 classic	 Satoshi	 bitcoin	 client	which	 has	 since	 been	 extensively	

improved	by	other	developers,	or	some	other	wallet	which	implements	the	bitcoin	protocol.	

The	latter	has	become	a	more	popular	option	among	users,	as	alternative	wallets	can	have	

desirable	properties	such	as	Simple	Payment	Verification	support	and	can	work	on	smaller	

and	more	 limited	devices	such	as	mobile	phones	where	storage,	bandwidth,	memory,	and	

battery	 are	 scarce.	 Both	 the	 protocol	 as	 well	 as	 the	 software	 are	 open,	 as	 is	 required	 in	

modern	cryptography.	The	users	can	check	if	the	source	code	follows	the	theoretical	model	

and	matches	the	security	proofs	explored	in	the	theory,	or	at	least	assume	that	this	can	be	

done	 by	 any	 expert	 who	 desires	 to	 do	 so.	 Bitcoin	 software	 is	 available	 for	 all	 modern	

operating	systems.		

After	the	user	has	run	the	program	on	their	computer,	 it	 then	connects	to	other	peers	

on	 the	 network	 using	 typical	 peer-to-peer	 discovery	 schemas.	 These	 include	 the	 use	 of	

predefined	IP	lists	from	recently	known	Bitcoin	clients	for	the	initial	connection,	the	use	of	

some	public	servers	for	the	use	of	other	nodes	(e.g.	a	deprecated	peer	discovery	mechanism	

was	through	IRC),	and	of	course	the	ability	to	manually	connect	to	a	good	known	IP	address.	

In	 this	 way,	 each	 node	 connects	 to	 a	 number	 of	 other	 peer	 nodes	 on	 the	 network	

(Antonopoulos,	2014).	Furthermore,	 each	node	produces	a	public	key	which	 they	publish	

on	the	network	and	keeps	the	respective	private	key	secret	on	the	local	system.	The	secret	

key	of	the	user	is	required	to	make	the	payments,	and	so	must	be	properly	protected,	as	an	

adversary	could	use	it	to	perform	transactions	with	the	user’s	money	in	their	stead.	

Payment	schema	

A	coin	owner	transfers	 their	coin	by	publishing	a	digitally	signed	statement.	 In	particular,	

the	sender	of	money,	Bob,	digitally	signs	his	desire	to	perform	a	transaction,	including	the	

recipient	of	the	money,	Alice,	in	the	message.	By	verifying	Bob’s	signature,	Alice	can	ensure	

that	Bob	is	truly	the	one	who	authorized	the	transaction.	

The	 first	problem	 in	 such	a	 schema	 is	 that	 the	money	must	 somehow	be	produced.	 It	

would	be	undesirable	if	each	user	were	able	to	produce	money	arbitrarily	and	then	sign	it	

to	produce	a	valid	 transaction.	 In	 short,	we	want	each	node	on	 the	network	 to	be	able	 to	

confirm	that	each	user	in	fact	has	the	money	they	are	transfering.	The	only	way	to	achieve	

this,	as	there	is	no	central	trusted	third	party,	is	to	publish	on	the	network	exactly	who	has	
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how	much	coin.	This	 is	 required	so	 that	we	can	confirm	a	 coin	 is	valid	and	 that	 it	 can	be	

spent	by	their	owner	only	once.	

The	 network	 maintains	 collectively	 a	 list	 of	 unspent	 coins,	 the	 unspent	 transaction	

output	 set;	 the	 technical	 definition	 of	 the	 term	 is	 introduced	 later.	 In	 this	 way,	 each	

recipient	 can	 confirm	 that	 the	money	 they	 received	 from	 the	 sender	were	 owned	 by	 the	

sender	at	the	time	of	the	transaction.	When	a	new	full	node	is	connected	to	the	network,	the	

nodes	with	which	 it	 connects	 inform	 it	 about	 the	 current	unspent	 transaction	output,	 the	

list	of	unspent	coin.	More	specifically,	when	a	node	is	newly	connected	to	the	network	they	

are	 informed	about	the	 full	history	of	 transactions	which	took	place	on	the	network	since	

the	beginning	of	 time.	When	a	node	 reconnects	 to	 a	network,	 they	use	 a	 synchronization	

mechanism	to	become	informed	about	transactions	that	 took	place	since	the	 last	 time	the	

node	was	connected	to	the	network.	

For	a	node	to	be	able	to	maintain	a	valid	list	of	unspent	coin,	it	is	also	required	for	new	

transactions	to	be	published	on	the	network	while	they	take	place.	This	is	achieved	through	

a	 mechanism	 known	 as	 broadcasting.	 During	 broadcasting,	 when	 two	 nodes	 perform	 a	

transaction,	 they	both	broadcast	 to	 their	neighbours	 the	details	of	 that	 transaction.	These	

details	include	the	sender,	the	recipient,	and	the	amount	of	the	transaction	(exact	details	of	

what	 a	 transaction	 contains	 are	 presented	 in	 the	 graph-theoretical	modeling	 below).	 The	

neighbours	recursively	keep	publishing	this	 transaction	until	 the	whole	network	becomes	

aware	of	it.	

Anonymity	

The	publishing	of	transactions	on	the	network	destroys	their	anonymity,	as	each	node	has	

access	to	the	full	history	of	all	the	transactions	ever	made	by	everyone	else.	Nonetheless,	it	

is	easy	 to	create	a	schema	 in	which	anonymity	 is	preserved	even	 though	 transactions	are	

published.	 Bitcoin	 uses	 a	 system	 in	 which	 a	 different	 private	 key	 is	 used	 for	 each	

transaction.	This	means	that	we	use	a	particular	public	key	to	receive	a	certain	amount	of	

money	and	then	its	respective	private	key	to	sign-off	the	spending	of	that	same	amount	of	

money.	However,	we	will	use	a	different	public	key	to	receive	money	each	new	time	–	and	

the	respective	secret	key	to	spend	it.	

The	use	of	a	different	public	key	for	every	receiving	transaction	is	easy	and	is	already	

automatically	 performed	 by	 most	 bitcoin	 wallets.	 Ensuring	 that	 there	 is	 no	 correlation	

between	 IP	 addresses	 and	 keys	 and	 that	 each	 key	 remained	 unnamed,	 the	 network	 can	

achieve	anonymity.	This	is	possible	because	the	correlation	of	use	between	two	keys	owned	

by	 the	 same	 physical	 person	 is	 not	 trivial.	 However,	 the	 correct	 avoidance	 of	 correlation	
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attacks	through	forensic	analysis	of	the	blockchain	is	a	difficult	manner,	and	true	anonymity	

is	rarely	achieved	in	practice	(Reid	&	Harrigan,	2013).	

In	 this	 schema,	 every	user	has	 full	 knowledge	of	 the	 statistical	 elements	of	 the	global	

economy,	 in	 detail,	 but	 anonymously.	 They	 can	 know	 exactly	 the	 amount	 of	 bitcoin	

exchanged	 daily	 on	 the	 whole	 network,	 the	 amount	 in	 each	 transaction,	 the	 fequency	 of	

transacting,	etc.	but	not	 the	 identity	of	 those	who	execute	these	transactions.	This	 type	of	

anonymity	is	similar	to	the	anonymity	that	exists	in	public	trading	of	companies	where	the	

exchange	of	shares	is	published	among	the	financial	statistics	of	the	company,	but	without	

publishing	the	identity	of	the	buyer	or	seller.	

Technical	bitcoin	background	

Let	us	now	proceed	to	a	more	technical	analysis	of	 the	nature	of	 the	bitcoin	currency,	 the	

system,	 network,	 and	 security	 in	 detail.	 This	 technical	 analysis	 will	 be	 necessary	 to	

understand	 the	 self-enforcing	 contracts	 employed	 in	 the	 security	 of	 the	 OpenBazaar	

protocol.	This	is	required	to	explain	how	exactly	it	is	possible	to	prove	that	someone	owns	a	

coin	that	indeed	is	his	own	and	he	did	not	produce	arbitrarily.	It	also	allows	us	to	illustrate	

that	 a	 coin	 can	 only	 be	 spent	 from	 its	 rightful	 owner	 and	 prove	 that	 the	 probability	 of	

double	 spending	 of	 the	 same	 coin	 that	 we	 can	 achieve	 is	 negligible.	 To	 achieve	 these	

properties	which	are	 required	 for	a	 system	 that	 secures	 transactions,	 it	 is	useful	 for	each	

coin	 to	 have	 an	 identity	 and	 to	 be	 defined	 as	 an	 entity.	 As	 this	 is	 about	 a	 decentralized	

network,	it	is	impossible	for	each	coin		to	have	an	incremental	number	or	have	its	identity	

produced	 by	 a	 central	 authority,	 but	 it	 has	 to	 be	 created	 and	 verified	 in	 a	 decentralized	

manner.	

A	coin	in	Bitcoin’s	system	is	defined	as	a	chain	of	digital	signatures.	The	coin	begins	its	

life	through	mining	(see	next	section)	that	results	 in	the	production	of	the	coin	which	is	a	

string	 of	 data	 that	 contains	 information	 about	 the	 coin	 such	 as,	 for	 example,	 its	 nominal	

value.	 At	 the	 transfer	 of	 the	 coin	 from	 the	 first	 owner,	 Bob,	 to	 the	 second,	 Alice,	 Bob	

concatenates	the	initial	coin	with	the	public	key	of	Alice.	Next,	he	applies	a	hash	function	to	

the	 result	 and	 signs	 the	 hashed	 value	 using	 his	 own	 private	 key.	 This	 is	 now	 a	 coin	 that	

belongs	to	Alice.	

When	Alice’s	turn	comes	to	pay	Charlie	using	the	money	she	received	from	Bob,	she	will	

concatenate	her	coin	with	Charlie’s	public	key,	then	hash	the	result,	and	sign	the	result	with	

her	 own	private	 key.	 As	 only	Alice	 knows	 her	 private	 key,	 the	 coin	 can	 only	 be	 spent	 by	

Alice	and	no	one	else.	The	fact	that	the	coin	is	indeed	destined	for	Charlie	can	be	verified	by	

himself	simply	by	examining	the	contents	of	the	coin	he	recieved,	as	this	must	contain	his	

public	key.	If	it	doesn’t,	then	Charlie	can	refuse	the	transaction.	The	fact	that	the	coin	indeed	
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came	 from	Alice	 can	be	 verified	by	Charlie	 easily	 by	 verifying	Alice’s	 digital	 signature.	Of	

course,	 in	 addition	 to	a	 simple	 signature	 check,	 it	must	 also	be	verified	 that	 the	 coin	was	

indeed	in	Alice’s	posession	before	it	is	transfered	to	him	by	verifying	that	the	coin	was	part	

of	the	unspent	transaction	output	set.	

The	 sequence	 of	 these	 signatures	 is	 shown	 in	 the	 diagram	 Figure	 2:	 Chain	 of	 coin	

transactions	in	bitcoin.	

	

FIGURE	2:	CHAIN	OF	COIN	TRANSACTIONS	IN	BITCOIN	

Double	spending	 	

While	we	have	made	sure	that	only	the	rightful	owners	of	a	coin	can	spend	it	and	that	the	

receiver	of	the	coin	can	verify	that	the	coin	belonged	to	the	sender	as	well	as	the	fact	that	

the	 receiver	 is	 actually	 himself,	 we	 have	 not	 yet	 achieved	 any	 insurance	 as	 far	 as	 coin	

double	spending	is	concerned.	The	problem	occurs	in	the	fact	that	a	sender	can	spend	the	

same	coin	multiple	 times.	As	 the	network	 is	decentralized,	a	double	spending	may	not	be	

immediately	noticed,	but	may	require	several	minutes	until	the	network	becomes	aware	of	

it.	

A	different	way	to	look	at	the	problem	is	that	double	spending	could	occur	in	a	longer	

timespan	such	as	a	month	or	a	year.	In	this	case	it	is	impossible	to	verify	the	true	recipient	

of	a	coin,	as	a	malicious	adversary	can	claim	that	a	transaction	took	place	much	earlier	 in	

the	past,	 as	 no	 trusted	 third	party	 that	 stores	 the	 order	 in	which	 transactions	 took	place	

exists.	It	is	also	a	problem	that	is	impossible	to	solve	without	modifying	our	initial	scheme.	

The	obvious	solution	that	rejects	a	transaction	if	it	occurs	multiple	times	is	not	acceptable,	

as	this	would	allow	an	adversary	to	cancel	previous	transactions	by	double	spending	in	the	

future,	something	that	would	cause	both	himself	and	the	recipient	of	the	money	to	lose	that	

money,	but	remains	unwanted,	as	we	would	like	the	transactions	to	be	confirmed	and	the	

reciepient	 to	 be	 certain	 that	 they	 have	 received	 the	 money	 and	 that	 the	 money	 can	 be	
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indeed	spent	in	the	future.	Furthermore,	an	adversary	cannot	be	detected	and	isolated,	as,	

due	to	anonymity,	it	is	impossible	to	know	which	IP	address	they	use,	and	can	continue	to	

act	maliciously	using	a	different	public	key	each	time.	

This	problem	is	solved	by	Bitcoin	using	an	 ‘arrow	of	time’	system	which	enables	us	to	

know	with	certainty	the	order	in	which	transactions	took	place.	Supposing	that	it	is	possible	

to	know	which	transaction	happened	before	which,	our	system	is	easily	fixed	by	assuming	

that	the	only	valid	transaction	is	the	first	transaction	in	which	a	coin	was	spent.	This	way,	

when	the	coin	is	spent,	the	receiver	can	verify	that	the	coin	was	not	spent	again	in	the	past	

and	 accept	 the	 transaction,	 or	 reject	 the	 transaction	 if	 there	 has	 been	 a	 double	 spend.	 In	

addition,	 the	 whole	 network	 can	 reject	 double-spending	 transactions,	 i.e.	 transactions	

which	spend	money	that	is	not	within	the	unspent	transaction	output	set.	

Of	 course,	 it	 is	 impossible	 to	 rely	 on	 digital	 signatures	 as	 a	 certification	 of	 date	 of	 a	

transaction	 commencement,	 as	 a	malicious	 adversary	 can	 easily	 sign	 false	 statements.	 In	

traditional	 academic	 cryptosystems,	 the	 arrow	of	 time	 is	 implemented	with	 a	publication	

(for	example	in	a	newspaper	or	on	Usenet),	something	someone	can	verify	independently.	

This	 is	 something	 impossible	 to	do	 in	 the	case	of	Bitcoin,	as	we	start	 relying	on	a	 trusted	

third	party	which	is	begging	the	question.	Bitcoin	uses	a	new	system	to	achieve	the	arrow	of	

time	 which	 is	 implemented	 by	 taking	 advantage	 of	 proof	 of	 work	 chains	 termed	 the	

blockchain.	

Proof	of	work	

The	bitcoin	network	nodes	 share	a	 common	chain	which	 contains	 the	 transactions	 in	 the	

order	 they	 took	 place.	 This	 chain	 is	 common	 between	 all	 of	 them	 (modulo	 forks)	 and	

consists	of	a	 linked	list	of	blocks.	Each	block	contains	a	list	of	transactions	that	took	place	

near	a	specific	moment	in	time.	To	build	the	chain,	every	block	is	hashed	to	produce	a	hash.	

Then,	 every	 next	 block	 contains	 inside	 its	 contents	 the	 hash	 of	 the	 previous	 block.	 This	

results	in	every	next	block	in	the	chain	requiring	the	previous	block	to	have	been	computed	

before	it	can	be	computed.	Due	to	the	collision	resistance	of	hashes,	the	previous	block	will	

be	required	to	be	hashed	before	the	next	block	can	be	computed.	

	

FIGURE	3:	A	PROOF-OF-WORK	CHAIN	OF	BLOCKS	IN	BITCOIN	



36	

Even	 though	 blocks	 can	 be	 arranged	 chronologically,	 someone	 can	 easily	 change	 the	

order	of	two	blocks	within	the	chain	by	changing	the	respective	hashes	and	producing	new	

ones	wherever	 required,	 an	 undesired	 intervention,	 as	 this	would	 allow	 an	 adversary	 to	

fake	 the	 order	 of	 transactions	 in	 time.	 To	 avoid	 this	 problem,	 bitcoin	 introduces	 a	

technically	difficult	cryptographic	problem	which	is	now	associated	with	the	production	of	

every	block.	

From	 the	assumption	 that	 the	hash	 inversion	 is	hard,	proof	of	work	 is	 established	by	

seeking	a	range-collision	of	the	hash	function	on	the	block.	More	specifically,	it	is	asked	that	

the	 hash	 of	 a	 block	 is	 smaller	 than	 a	 given	 number,	 the	 target,	 which	 is	 calculated	

collectively	 by	 the	 peer-to-peer	 network.	 The	 freedom	 given	 to	 each	 full	 node	 when	

producing	a	 candidate	block	when	 it	 comes	 to	 changing	 the	 resulting	hash	 is	 to	modify	 a	

nonce,	a	value	which	 is	concatenated	with	 the	rest	of	 the	block	data	and	serves	simply	 to	

modify	the	resultant	hash	value.	As	we	believe	hash	functions	are	one-way,	the	only	way	to	

achieve	 a	 hash	 value	 within	 the	 desired	 range	 is	 with	 a	 series	 of	 brute-force	 trials	 of	

different	nonces,	a	computational	process	which	 is	exponential	 in	 terms	of	 the	number	of	

digits	 of	 the	 hash	 function	 output.	 By	 setting	 the	 correct	 target	 value,	 the	 peer-to-peer	

network	can	alter	the	difficulty	of	this	procedure.	

	

FIGURE	4:	THE	PROOF-OF-WORK	PROTOCOL	

Figure	 4:	 The	 Proof-Of-Work	 protocol	 visually	 illustrates	 the	 proof-of-work	 protocol.	

Alice,	 on	 the	 right,	 challenges	 Bob,	 on	 the	 left,	 with	 a	 proof-of-work	 challenge.	 Given	 a	

known	target	ε,	and	a	fixed	pre-image	K,	she	asks	Bob	for	a	nonce	value	x,	such	that	the	hash	

target	ε	is	met	under	a	hash	function	H.	

A	 high-level	 implementation	 of	 a	 proof-of-work	 algorithm	 is	 shown	 in	 Listing	 1:	 A	

Simple	Proof-Of-Work	Algorithm.		
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x	=	rand();	

do	{	

				++x;	

}	while	(H(K||x)	>=	ε);	

return	x;	

LISTING	1:	A	SIMPLE	PROOF-OF-WORK	ALGORITHM	

The	proof-of-work	target	 is	evaluated	collectively	by	the	network	using	a	prespecified	

algorithm.	Consequently,	all	 the	nodes	of	the	network	simltaneously	attempt	to	produce	a	

new	block	which	contains	all	the	transactions	that	had	not	been	contained	so	far	within	the	

accepted	blockchain	 in	addition	 to	meeting	 the	 target	proof-of-work	requirements.	As	 the	

network	 can	 control	 the	 difficulty	 of	 proof-of-work,	 the	 expected	 frequency	 of	 block	

generation	is	controlled.	

It	 is	 obvious	 that,	while	 proof-of-work	 is	 required	 from	 each	 node	which	 produces	 a	

block	as	the	 last	 item	in	the	blockchain,	 for	this	block	to	be	accepted	as	valid	 it	must	only	

contain	valid	transactions.	This	is	ensured	because	all	other	nodes	will	never	accept	a	block	

at	 the	 end	of	 the	blockchain	which	 contains	 the	double-spending	of	 the	 same	 coin	or	 the	

spending	of	a	coin	that	is	not	part	of	the	unspent	transaction	output	set.	

When	 a	 new	 block	 is	 computed	 by	 a	 node,	 this	 is	 then	 broadcasted	 to	 all	 their	

neighbours	which,	in	turn,	transmit	it	to	the	whole	network.	While	the	frequency	of	blocks	

generation	is	controlled	so	that	it	is	small	enough	(for	example	in	the	bitcoin	blockchain	at	

an	 expected	 rate	 of	 1	 block	 per	 10	 minutes)	 so	 that	 two	 blocks	 are	 not	 produced	

simultaneously	from	two	different	nodes,	this	can	on	occasion	take	place,	as	the	brute-force	

hash	 inversion	 cannot	be	predicted.	 In	 this	 case,	when	a	node	 receives	both	 these	 blocks	

that	extend	the	blockchain,	a	blockchain	from	the	two	can	be	chosen	arbitrarily	among	the	

blockchains	 that	 share	 the	 same	 number	 of	 blocks.	 A	 node	 accepts	 a	 block	 as	 valid	 by	

accepting	the	transactions	contained	therein	as	valid	and	starting	proof-of-work	on	a	new	

block	on	top	of	the	existing	blockchain	ending	on	the	accepted	block.	In	case	a	block	is	not	

accepted	and	an	alternative	block	is	accepted,	the	transactions	within	the	unaccepted	block	

are	not	 lost;	 they	will	 instead	be	 included	 in	 the	alternative	accepted	block,	or	 in	a	 future	

block.	 The	 node	which	will	 continue	 extending	 the	 blockchain	 is	 the	 one	who	 ultimately	

decides	which	 fork	 of	 the	 blockchain	will	 be	 treated	 as	 valid,	 and	which	will	 become	 an	

orphan.	
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FIGURE	5:	A	BITCOIN	BLOCKCHAIN	WITH	SOME	ORPHAN	FORKS	

In	 Figure	 5:	 A	 bitcoin	 blockchain	 with	 some	 orphan	 forks,	 each	 square	 constitutes	 a	

block	which	contains	multiple	transactions	which	took	place	in	nearby	times.	The	currently	

valid	 blockchain	 is	 shown	 in	 black.	Orphan	 chains	 are	 shown	 in	 purple,	 chains	 that	were	

created	by	extending	 the	current	 chain	at	 the	same	 time	as	other	extensions,	which	were	

eventually	 deemed	 invalid	 as	 the	 winning	 miner	 chose	 the	 current	 blockchain.	 The	 first	

block,	or	genesis	block,	is	shown	in	green.	

The	existence	of	a	transaction	in	a	block	confirms	that	the	transaction	has	taken	place.	

The	deeper	the	block	is	within	the	blockchain,	the	more	conformed	a	transaction	becomes.	

This	 becomes	 clear	 if	 we	 consider	 the	 time	 required	 for	 an	 adversary	 to	 modify	 the	

blockchain	in	order	to	reorder	transactions,	to	cancel	a	transaction,	or	to	add	a	transaction	

before	 a	 given	 transaction.	 This	 time	 becomes	 exponential	 in	 the	 number	 of	 blocks	 that	

have	followed	the	block	in	which	a	given	transaction	is	confirmed.	Therefore,	a	user	wishing	

to	verify	that	a	transaction	was	confirmed	can	wait	until	5	or	6	confirmation	blocks	appear	

after	the	block	that	first	confirms	their	transaction	so	that	they	can	be	sure	the	transaction	

will	not	be	altered.	The	exact	calculation	for	the	probability	of	cancelling	a	transaction	for	a	

determined	adversary	given	a	number	of	confirmation	blocks	after	 the	block	containing	a	

transaction	and	with	a	given	CPU	power	can	be	found	in	the	original	Nakamoto	paper.	

The	 modification	 of	 the	 blockchain	 is	 hard	 for	 an	 adversary	 as	 the	 blockchain	 is	

constantly	 extended.	 To	 obtain	 control	 of	 the	 blockchain,	 the	 adversary	 would	 need	 to	

control	the	majority	of	the	CPU	power	of	the	network.	Bitcoin’s	security	is	founded	on	the	

fact	that	this	will	not	occur.	Various	fork-based	attacks	have	been	explored	in	the	literature	

(Eyal	 &	 Sirer,	 2014),	 but	 the	 security	 of	 bitcoin	 has	 also	 been	 formalized	 and	 rigorously	

explored	(Garay,	Kiayias,	&	Leonardos,	2015).	

Mining	

The	creation	of	new	blocks	is	termed	mining.	The	first	mining	was	done	by	Satoshi	and	the	

block	 that	 was	 produced	 is	 called	 the	 genesis	 block.	 Every	 valid	 chain	 starts	 from	 the	

genesis	 block.	 The	 coinbase	 transaction	 of	 the	 genesis	 block	 contains	 a	 timestamping	

method,	 which	 indicates	 that	 no	 bitcoin	 existed	 before	 the	 3rd	 of	 January	 2009.	 This	 is	

achieved	by	publishing	a	news	story	from	that	date	within	that	block:	
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“The	Times	03/Jan/2009	Chancellor	on	brink	of	second	bailout	for	banks”	

As	this	event	did	not	take	place	before	that	date	and	would	have	been	impossible	to	predict	

the	Times	publication	exactly,	this	indicates	that	bitcoin	was	not	a	pre-mined	currency.	

Every	block	mined	contains	a	reference	to	the	miner	that	generated	it.	Mining	a	block,	in	

addition	 to	 confirming	 the	 transactions	 it	 contains,	 rewards	 the	miner	with	 a	 number	 of	

bitcoins	that	are	created	for	the	specific	block.	This	happens	through	a	transaction	known	

as	 the	 coinbase	 transaction,	 and	 this	 is	 the	way	new	bitcoin	 is	 generated.	 The	 amount	 of	

coin	mined	in	each	block	is	preagreed	on	by	the	network	and	is	steadily	reduced	so	that	the	

available	 amount	 of	 coin	 in	 the	market	 converges	 to	 21,000,000	bitcoins.	 Currently,	 each	

coinbase	transaction	generates	25	BTC.	This	amount	is	halved	every	(expected)	four	years.	

The	convergence	function	is	shown	in	Figure	6:	Total	bitcoins	over	time.	

	

FIGURE	6:	TOTAL	BITCOINS	OVER	TIME	

Technical	details	

A	few	technical	details	on	the	implementation	of	the	bitcoin	cryptography	are	appropriate.	

Bitcoin	 uses	 a	 signature	 scheme	 to	 validate	 the	 owner	 of	 coin	 during	 a	 transaction.	 The	

scheme	 uses	 elliptic	 curve	 DSA.	 The	 hash	 function	 used	 for	 proof	 of	 work	 is	 a	 double	

SHA256	 function.	 SHA256	 is	 also	 used	 to	 protect	 the	 public	 keys	 of	 coins	 before	 being	

spent;	this	is	the	pay-to-pubkey-hash	functionality.	
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The	Bitcoin	DAG	

The	above	explanation	of	bitcoin’s	functionality	is	quite	simplified.	To	fully	understand	the	

abilities	 bitcoin	 enables,	 which	 we	 utilize	 to	 a	 great	 extend	 in	 this	 work,	 the	 set	 of	

transactions	must	be	modeled	like	a	directed	acyclic	graph	(DAG)	in	which	transactions	are	

the	nodes	and	edges	connect	transaction	outputs	with	transaction	inputs.	Note	that	this	is	

dissimilar	 to	 simplistic	 graph-theoretic	 modeling	 of	 economic	 systems	 where	 agents	 are	

nodes	and	transactions	between	them	are	edges.	

	

	

FIGURE	7:	A	BITCOIN	TRANSACTION	NODE	

	

Figure	7:	A	bitcoin	transaction	node	illustrates	a	bitcoin	transaction	node,	indicated	by	a	

blue	 square.	 It	 has	one	 incoming	edge	of	 value	15	BTC	and	an	outgoing	 edge	of	 value	14	

BTC.	 Its	 input	 edge	 is	 connected	 as	 an	 output	 edge	 to	 a	 previous	 transaction	 (shown	

partially	 on	 the	 left),	 while	 its	 output	 edge	 is	 connected	 as	 an	 input	 edge	 to	 a	 next	

transaction	(shown	partially	on	the	right).	

In	the	bitcoin	transaction	graph,	each	transaction	can	have	multiple	inputs	and	multiple	

outputs.	 Edges	 are	 directional	 and	 indicate	monetary	 value	 flow.	 The	 Kirchhoff	 property	

mandates	 that	 the	 outputs	 are	 at	 most	 equal	 to	 the	 inputs	 and	 can	 be	 summarized	 as	

follows	for	all	valid	transactions	t:	

∀𝑡 𝑣(𝑜)
!∈!"# !

≤  𝑣(𝑖)
!∈!"(!)

	

Where	 in	 and	 out	 denote	 the	 set	 of	 all	 in-edges	 and	 out-edges	 of	 a	 transaction	

respectively	and	v	is	a	value	function	that	evaluates	the	amount	of	coin	flow	of	an	edge.	

The	 Kirchhoff	 difference	 is	 then	 paid	 as	 a	 fee	 to	 the	 miner	 who	 first	 confirms	 the	

particular	transaction,	and	the	collection	of	all	fees	is	the	incentive	to	the	miner,	in	addition	

to	the	coinbase	amount:	

𝑓𝑒𝑒𝑠(𝑏𝑙𝑜𝑐𝑘) ≝ 𝑣(𝑖)
!∈!"(!)

− 𝑣(𝑜)
!∈!"# !!∈!"(!"#$%)
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In	the	figure	above,	the	fees	paid	to	the	miner	by	the	particular	transaction	amount	to	1	

BTC.	

	

FIGURE	8:	A	COINBASE	TRANSACTION	

When	a	transaction	is	created,	all	inputs	and	outputs	must	be	specified.	However,	some	

input	edges	can	be	dangling;	this	means	that	they	are	input	edges	to	some	nodes,	but	they	

are	not	 connected	 to	output	 edges.	These	 are	 called	coinbase	 transaction	 inputs	 and	 they	

denote	coins	generated	as	reward	for	mining.	A	coinbase	transaction	example	is	shown	in	

Figure	8:	A	coinbase	transaction.	

	

FIGURE	9:	AN	UNSPENT	TRANSACTION	OUTPUT	

Output	edges	can	also	be	dangling;	such	edges	are	output	from	a	particular	transaction	

node,	but	are	not	connected	to	some	other	node	as	inputs.	These	outgoing	edges	constitute	

the	 UTXO,	 the	 unspent	 transaction	 output	 set,	 which	 is	 available	 for	 spending	 (Buterin,	

2014).	 They	 will	 be	 connected	 to	 input	 edges	 in	 the	 future	 when	 the	 money	 in	 the	

transactions	 is	 spent.	 An	 example	 unspent	 transaction	 output	 is	 shown	 in	 Figure	 9:	 An	

unspent	transaction	output.	

Edges	are	weighted	with	a	weight-function	v	which	associates	a	monetary	value	to	each	

edge.	
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FIGURE	10:	A	COMPLETE	BITCOIN	TRANSACTION	GRAPH	

In	 Figure	 10:	 A	 complete	 bitcoin	 transaction	 graph,	 a	 complete	 bitcoin	 transaction	

graph	 is	 shown.	 Of	 course,	 the	 real-world	 transaction	 graph	 is	 much	 larger.	 In	 this	

transaction	graph,	 transactions	A	and	B	are	coinbase	 transactions	with	dangling	 inputs	of	

value	 25	BTC	 each.	 Transaction	A	has	 two	outputs;	 one	with	 value	 10	BTC	 and	 one	with	

value	15	BTC.	This	could	be	due	 to	a	payment	being	made	 for	a	product	of	value	15	BTC.	

The	10	BTC	output	of	transaction	A	is	called	a	change	output.	Transaction	C	is	funded	with	

multiple	inputs;	15	BTC	from	transaction	A	and	25	BTC	from	transaction	B.	Because	C	does	

not	pay	any	fees	to	miners,	it	may	take	some	time	until	it	gets	fully	processed.	

It	 is	now	easy	to	visually	 illustrate	the	double	spending	attack	as	seen	 in	Figure	11:	A	

double	spend.	One	specific	output	edge	from	the	UTXO	is	attached	to	multiple	input	edges	

in	 different	 transactions	 addressed	 to	 different	 people.	 If	 these	 transactions	 are	 not	

broadcasted	simultaneously	but	there	is	delay	in	their	propagation,	they	may	be	seen	by	the	

network	at	different	 times.	 If	merchants	do	not	wait	 for	confirmation,	an	adversary	could	

trick	them	into	both	receiving	the	same	coin.	

	

FIGURE	11:	A	DOUBLE	SPEND	
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The	Bitcoin	script	

In	 the	 bitcoin	 DAG,	 edges	 also	 have	 associated	 code	 with	 them,	 which	 specifies	 what	

constitutes	a	valid	spending	of	a	dangling	edge.	In	bitcoin,	this	code	is	written	in	a	language	

termed	‘bitcoin	script’	which	is	a	push-down	automaton-style	scripting	language.	

The	 scripting	 language	 works	 by	 executing	 one	 command	 at	 a	 time	 from	 a	 list	 of	

commands.	The	list	of	commands	cannot	have	any	branching	or	other	flow	operators	such	

as	 conditionals;	 they	 are	 all	 executed	 in	 order.	 The	 only	 flow-interrupting	 commands	

available	 are	 exception-style	 commands	 which	 raise	 exceptions	 and	 abort	 the	 whole	

execution	 flow.	 The	 scripting	 language	 operates	 on	 a	 data	 stack	which	 contains	 pieces	 of	

data	to	be	processed.	

The	script	is	executed	when	an	attempt	is	made	to	connect	a	dangling	output	to	an	input	

of	a	new	transaction,	thereby	indicating	a	spending.	The	script	is	then	executed	by	giving	it	

a	particular	set	of	inputs	associated	with	both	the	old	and	new	transaction.	The	spender	is	

responsible	for	providing	the	initial	stack	that	the	script	will	be	executed	upon.	The	script	

code	is	then	executed	in	full.	If	an	exception	occurs,	the	spending	is	aborted,	indicating	that	

the	 spending	was	 not	 rightful;	 if	 execution	 finishes	without	 exception	 incidents,	 the	 data	

stack	is	examined	and	compared	to	the	stack	of	a	single	element,	TRUE,	which	is	expected	to	

be	 found	 on	 the	 stack.	 If	 it	 is	 found,	 then	 the	 transaction	 is	 considered	 rightful	 and	 the	

money	 is	 considered	 transferred,	 otherwise	 the	 transaction	 is	 considered	 invalid	 and	

aborted.	 It	 is	worthwhile	noting	 that	 there	 is	no	other	operation	occuring	when	money	 is	

spent	 or	 transferred;	 there	 is	 no	 ledger	 or	 decentralized	 database	 maintaining	 account	

balances	other	than	the	transaction	DAG.	

Bitcoin	scripts	can	express	a	multitude	of	scenarios,	the	most	common	of	which	is	called	

the	 payment	 to	 a	 ‘public	 key	 hash’.	 In	 this	 scenario,	 the	 spender	 must	 provide	 proof	 of	

ownership	of	the	private	key	associated	with	the	public	key	to	which	the	payment	is	being	

made.	 This	 is	 performed	 by	 giving	 a	 digital	 signature	 as	 part	 of	 the	 initial	 stack	 that	 the	

script	 runs	 on.	 The	 digital	 signature	 signs	 the	 transaction	 that	 contains	 the	 input	 the	

spender	wishes	 to	 connect	 the	dangling	output	 to,	 thereby	 indicating	 the	 intention	of	 the	

spender	to	send	the	money	to	a	particular	new	transaction.	

The	standard	bitcoin	script	is	shown	in	Listing	2:	The	standard	bitcoin	script.	
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OP_DUP	

OP_HASH160	

<pubKeyHash>	

OP_EQUALVERIFY	

OP_CHECKSIG	

LISTING	2:	THE	STANDARD	BITCOIN	SCRIPT	

This	 script	 is	 executed	 with	 two	 parameters	 initially	 placed	 on	 the	 stack;	 the	 “sig”	

parameter	and	the	“pubKey”	parameter.	Upon	execution,	 the	DUP	operator	duplicates	 the	

alleged	“pubKey”	on	the	top	of	the	stack,	so	that	the	stack	now	contains	two	instances	of	the	

“pubKey”	and	one	instance	of	the	“sig”.	The	HASH160	operator	pops	the	top	of	the	stack	and	

hashes	 it,	 then	pushes	 the	 result	 of	 the	 stack	 to	 the	 top.	 The	 “pubKeyHash”	 constant	 is	 a	

constant	 provided	 hard-coded	 in	 the	 output	 script	 by	 the	 payer	 which	 indicates	 which	

public	key	is	authorized	to	spend	the	money;	this	is	the	bitcoin	address	of	the	receiver,	for	

example	 mz6KvC4aoUeo6wSxtiVQTo7FDwPnkp6URG.	 This	 simply	 pushes	 a	 constant	 on	

top	 of	 the	 stack.	 The	 following	 EQUALVERIFY	 operator	 then	 compares	 the	 hard-coded	

pubKeyHash	with	 the	 result	of	 the	HASH160	operator,	 the	currently	 two	 top	 items	 in	 the	

computation	 stack.	 This	 is	 an	 example	 of	 an	 operator	 that	 can	 cause	 an	 exception;	 if	 the	

equality	fails,	execution	stops	through	an	exception,	and	so	payment	fails.	This	ensures	that	

only	 the	 rightful	 owner	 can	 spend	 the	 money.	 Finally,	 the	 CHECKSIG	 operator	 uses	 the	

pubKeyHash	 and	 sig	 values	 that	 have	 been	 pushed	 on	 top	 of	 the	 stack	 to	 perform	 a	

signature	 verification	 on	 the	 transaction	 to	 which	 the	 dangling	 edge	 was	 connected	 as	

input.	The	CHECKSIG	operator	returns	either	TRUE	or	FALSE	and	leaves	the	result	on	the	

computation	stack,	thereby	indicating	a	successful	or	failed	spend	respectively.	The	pay-to-

pubkey-hash	script	 is	 the	standard	method	of	making	payments	 in	bitcoin.	While	some	of	

the	 original	 bitcoin	 versions	 supported	 direct	 payments	 to	 public	 keys,	 it	 is	 considered	

more	 secure	 to	 pay	 to	 hashes	 of	 public	 keys,	 as	 this	 provides	 an	 additional	 layer	 of	

protection	in	case	elliptic	curve	cryptography	is	weakened	by	attacks	one	day.	

	

	

FIGURE	12:	AN	UNSPENT	PAY-TO-PUBKEY-HASH	TRANSACTION	

	

Figure	 12:	 An	 unspent	 pay-to-pubkey-hash	 transaction	 illustrates	 an	 unspent	

transaction	output	 of	 value	25	BTC	which	 is	 payed	 to	Alice’s	public	 key.	We	will	 use	 this	
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notation	to	illustrate	transactions	paid	to	specific	public	keys	using	the	pay-to-pubkey-hash	

standard	 output	 script.	 That	 is,	we	will	 note	 the	 transaction	 output	 amount	 on	 top	 of	 an	

edge	and	a	description	of	the	output	script	at	the	bottom	if	the	output	script	is	significant.	

Multisig	

Another	usual	output	script	is	a	multisig	script.	This	allows	any	of	k	signatures	out	of	n	to	

spend	the	money	reserved	in	the	dangling	output.	The	value	k	is	called	the	threshold	value.	

This	allows	many	applications,	some	of	which	we	propose	in	OpenBazaar	for	trust	reasons.	

It	 is	 fundamental	that	the	n	keys	are	not	necessarily	controlled	by	the	same	party.	Bitcoin	

provides	specialized	operators	 for	multisig	verification,	 in	particular	 the	CHECKMULTISIG	

operator.	 Multisig	 scripts	 are	 similar	 to	 the	 simple	 pay-to-public-key-hash	 script,	 except	

they	allow	for	and	may	require	multiple	signatures.	

	

FIGURE	13:	A	2-OF-3	MULTISIG	TRANSACTION	

Figure	 13:	 A	 2-of-3	 multisig	 transaction	 illustrates	 an	 unspent	 2-of-3	 multisig	

transaction	in	which	any	2	of	Alice,	Bob,	and	Charlie	can	sign	together	to	spend	the	output.	

We	will	use	this	notation	to	denote	multisig	transaction	output	scripts	when	relevant.	

For	complicated	output	scripts	such	as	multisig,	bitcoin	also	employs	an	indirect	script	

reference	 mechanism	 called	 p2sh	 /	 pay-to-script-hash	 (Andresen,	 2012).	 These	 output	

scripts	are	similar	 to	regular	 (bare)	output	scripts,	except	 the	script	code	 itself	 is	hashed.	

This	 way,	 the	 burden	 in	 fees	 of	 putting	 the	 output	 script	 in	 the	 blockchain	 lies	 on	 the	

spender,	not	the	payer.	

Multiple	transaction	inputs	

A	transaction	can	have	multiple	inputs	as	seen	in	Figure	10:	A	complete	bitcoin	transaction	

graph.	 These	 inputs	 must	 all	 be	 connected	 to	 certain	 outputs	 from	 previous	 unspent	

transactions.	 All	 these	 outputs	 contain	 scripts	 that	 must	 be	 given	 appropriate	 script	

parameters	 to	 confirm	 the	 fact	 that	 they	 are	 valid	 to	 spend;	 for	 standard	 output	 scripts,	

these	parameters	 importantly	 contain	digital	 signatures	on	 the	newly	 created	 transaction	

authorizing	 the	 connection	 of	 output	 and	 input	 edges.	 It	 is	 significant	 that	 some	

transactions	can	contain	inputs	that	are	signed	with	keys	controlled	by	different	parties.	In	

that	 case,	 all	 parties	 must	 authorize	 a	 transaction	 for	 it	 to	 be	 valid.	 This	 disparity	 is	

something	 we	will	 leverage	 to	 achieve	 trust	 in	 a	 game-theoretic	 setting	 for	 OpenBazaar,	

combining	it	with	the	multisig	setting	above.	
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It	 is	 important	 to	 notice	 that	 a	 transaction	 becomes	 valid	 atomically;	 a	 transaction	 is	

either	valid	or	invalid.	It	is	not	possible	for	a	transaction	to	be	partially	valid.	This	concept	is	

important	when	multiple	parties	are	putting	 inputs	 into	a	 transaction.	 If	only	some	of	 the	

parties	 sign	 the	 transaction	 outputs	 connected	 as	 inputs	 to	 the	 new	 transaction,	 the	

transaction	will	be	 invalid.	The	new	transaction	will	become	valid	and	will	be	a	candidate	

for	inclusion	in	the	blockchain	only	when	all	parties	have	completely	signed.	This	allows	for	

a	safe	mechanism	of	payment	where	a	party	only	pays	if	their	counterparty	also	pays.	This	

schema	is	further	explored	in	the	game	theoretic	sections	of	this	work.	
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Threat	model	

Before	we	explain	the	trust	issues	of	OpenBazaar,	we	would	like	to	introduce	our	threat	

model	and	exactly	what	our	trust	goals	are.	

OpenBazaar	 makes	 important	 assumptions	 about	 the	 strength	 of	 its	 adversaries.	 To	

understand	how	we	designed	and	developed	OpenBazaar,	 it	 is	 crucial	 to	understand	who	

the	adversaries	of	OpenBazaar	 can	be,	what	 resources	 they	are	able	 to	employ,	 and	what	

their	 goals	 are.	 Furthermore,	 it	 is	 important	 to	 understand	what	 the	 adversaries	 are	 not	

capable	of.	

Assumed adversaries 

Our	adversaries	can	be	broadly	categorized	in	4	different	categories:	

• Malicious	users	

• Malicious	corporations	

• Malicious	governments	

• Malicious	developers	

Each	of	these	constitutes	a	separate	entity	with	different	resources	and	different	goals.	

These	are	explained	below.	

Malicious users 

A	 malicious	 user	 is	 a	 user	 who	 tries	 to	 break	 the	 security	 of	 OpenBazaar,	 usually	 for	

financial	 gain.	We	 treat	malicious	 users	 as	 game-theoretic	 agents	who	 are	 able	 to	 invest	

approximately	as	much	as	they	would	win	out	of	a	security	breach,	as	long	as	their	winnings	

are	significantly	larger	than	their	losses.	

The	goal	of	malicious	users	is	to	make	money.	The	two	primary	ways	of	making	money	

by	breaking	the	security	of	OpenBazaar	are	these:	

• Being	able	to	receive	a	product	without	making	a	proper	payment	

• Being	able	to	receive	money	without	delivering	a	product	

As	 these	 attacks	 are	 financially	 incentivized,	 there	 is	 practically	 no	 limit	 as	 to	 what	

capital	can	be	invested	in	such	attacks	if	it’s	possible	to	earn	it	back.	However,	we	assume	

that	 the	 monetary	 sums	 that	 could	 be	 spent	 are	 unable	 to	 break	 the	 bitcoin	 network	

security	or	our	cryptographic	primitives,	for	example	by	brute-force	attacking	1024-bit	RSA	

keys	(Bos,	Kaihara,	Kleinjung,	Lenstra,	&	Montgomery,	2009).	At	this	time,	this	assumption	

limits	the	monetary	amounts	that	are	safe	to	exchange	over	OpenBazaar	to	a	few	million	US	

dollars.	
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These	 attackers	 are	 the	 easiest	 to	model,	 as	 they	 play	within	 the	 closed	 OpenBazaar	

system	and	can	be	treated	game-theoretically.	Generally,	in	our	games,	these	agents	can	be	

assumed	 to	 be	 ε-good,	meaning	 they	will	 not	 attempt	 a	malicious	 strategy	 if	 there	 is	 no	

financial	 gain	 in	 it	 (for	 a	 formal	 definition	 of	 ε-goodness,	 see	 page	 77).	 We	 aim	 to	 fully	

protect	users	from	such	malicious	actors.	

Malicious corporations 

Certain	corporations	may	find	the	OpenBazaar	network	undesirable	and	may	want	to	break	

its	security	in	order	to	bring	it	down.	Their	financial	incentive	may	not	be	part	of	the	closed	

OpenBazaar	 system:	 They	 may	 be	 able	 to	 make	 profits	 outside	 of	 OpenBazaar	 by	

compromising	the	reliability	and	security	of	OpenBazaar.	

The	goals	of	such	agents	are	the	following:	

• Bringing	down	the	majority	of	OpenBazaar	nodes	

• Disrupting	the	majority	of	connectivity	of	the	OpenBazaar	network	

• Breaking	the	trust	people	have	on	the	OpenBazaar	network	

“Breaking	the	trust”	here	means	creating	arbitrary	buyers	and	sellers	that	do	not	follow	

the	 expected	 strategy	 and	 default	 on	 their	 payments	 or	 shipping;	 or	 giving	 false	 trust	 to	

untrustworthy	nodes;	or	giving	false	negative	trust	to	trustworthy	nodes.	

The	 incentive	 for	 such	 corporations	 may	 be	 that	 they	 are	 losing	 money	 because	 of	

competitive	sales	on	the	OpenBazaar	network	(Allison,	2015).	

We	 currently	 assume	 that	 such	 corporations	 are	 able	 to	 spend	 similar	 monetary	

amounts	as	malicious	users	to	attack	the	network.	

However,	malicious	 corporations	 cannot	be	modeled	as	 ε-good,	 as	 they	wish	 to	 cause	

harm	 on	 the	 network	 through	 external	 incentives.	We	 aim	 to	 partially	 protect	 our	 users	

from	 such	malicious	 actors,	 through	 reputation	 systems	 (see	 page	 54)	 and	 through	 self-

enforcing	 contracts	 with	 positive	 margins	 in	 our	 nash	 equilibria	 (see	 page	 75)	 that	 can	

decentivize	such	malicious	actors.	Our	reputation	systems	which	require	proof-of-burn	(see	

page	65)	or	similar	sybil-resistant	schemes	help	in	making	these	attacks	more	costly.	Webs-

of-trust	 can	 fully	 protect	 careful	 users	 from	 such	malicious	 actors,	 although	 great	 care	 is	

required	from	the	user	side.	

Malicious governments 

As	the	OpenBazaar	software	can	be	operated	worldwide,	malicious	governments	should	be	

taken	 into	 account.	 Malicious	 governments	 may	 wish	 to	 bring	 the	 network	 down	 for	

censorship	reasons	or	for	legal	reasons	(Greenberg,	Inside	DarkMarket:	a	Silk	Road	the	FBI	

can't	touch,	2014).	
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The	goals	of	 such	agents	 are	 similar	 to	 the	goals	of	malicious	 corporations.	 In	 addition,	 a	

malicious	government	has	the	following	goals:	

• Deanonymization,	unmasking	the	anonymity	of	an	OpenBazaar	user	

• Censorship,	blocking	certain	categories	of	products	or	individual	products	from	

being	traded	

Unmasking	the	anonymity	of	an	OpenBazaar	user	is	technically	equivalent	to	making	an	

association	between	the	GUID	of	a	user	and	any	real-world	 identity-revealing	 information	

such	as	IP	addresses	(Greenberg,	Creators	of	New	Fed-Proof	Bitcoin	Marketplace	Swear	It’s	

Not	for	Drugs,	2014).	

A	malicious	government	has	similar	resources	as	a	malicious	corporation.	

Malicious	 governments	 can	 be	 categorized	 into	 active	 and	 passive	 based	 on	 their	

willingness	 to	 interfere	with	 networks.	 A	 passive	 government	 is	 unwilling	 to	manipulate	

data	 as	 a	 man-in-the-middle	 at	 the	 network	 level,	 and	 is	 only	 willing	 to	 be	 a	 passive	

eavesdropper.	 An	 active	 government	 is	 happy	 to	 interfere	 with	 network	 traffic	 by	

manipulating	it.	

A	passive	government	has	access	to	these	additional	resources:	

• They	can	manipulate	the	legal	framework	of	their	country	

• They	can	introduce	new	laws	

• They	can	issue	arbitrary	subpoenas	and	warrants	

• They	can	issue	secret	warrants	and	take	decisions	in	secret	courts	(Zimmerman	

M.	,	2013)	

An	active	government	has,	in	addition,	access	to	the	following	resources:	

• They	can	sybil-attack	the	issue	of	identification	documents	such	as	passports	

• They	can	man-in-the-middle	Internet	connections	within	their	country,	up	to	

but	not	defeating	the	Tor	security	assumptions	(Johnson,	Wacek,	Jansen,	Sherr,	

&	Syverson,	2013)	

• They	can	break	Internet	connectivity	within	their	country	(Chulov,	2012)	

• They	can	issue	arbitrary	PKI	certificates	for	HTTPS	and	TLS	protocols	(Stamm	&	

Soghoian,	2012)	

Malicious	governments	are	the	hardest	attack	to	guard	against.	While	our	goal	is	to	be	

able	 to	 defend	 against	malicious	 governments,	 we	 are	 not	 able	 to	 do	 this	 currently.	 Our	

decentralization	efforts	are	oriented	around	the	 idea	 that	basic	protection	 from	malicious	

governments	should	be	possible.	
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We	aim	to	provide	 full	protection	against	a	passive	malicious	government,	and	partial	

protection	against	active	malicious	governments.	

On	the	topic	of	denial-of-service	attacks	by	breaking	network	connectivity	completely,	

we	do	not	have	a	mechanism	of	defence.	We	rely	on	 the	 fact	 that	 countries	will	prefer	 to	

keep	 Internet	 connectivity	 for	 the	 most	 part	 of	 their	 users.	 Mesh	 networks	 (Johnson,	

Matthee,	 Sokoya,	 Mboweni,	 Makan,	 &	 Kotze,	 2007)	 can	 be	 used	 to	 guard	 against	 such	

attacks.	

Malicious developers 

The	last	malicious	actor	is	a	malicious	developer	with	commit	access.	These	developers	can	

be	manipulated	by	one	of	 the	 above	 actors	 through	 law	 (secret	 subpoenas)	 or	bribery	 in	

order	to	achieve	their	end-goals.	Therefore,	the	goals	of	a	malicious	developer	are	aligned	

with	the	goals	of	those	above.	

We	 prefer	 to	 list	 this	 malicious	 actor	 separately,	 as	 they	 have	 access	 to	 a	 different	

arsenal	of	attacks.	

In	particular,	a	malicious	developer	has	access	to	the	following	resources:	

• They	can	merge	arbitrary	pull	requests,	in	effect	writing	arbitrary	code	

Our	 primary	means	 of	 defence	 against	malicious	 developers	 are	 secure	 development	

practices	(see	page	51).	
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Secure	development	model	

To	 be	 able	 to	 meet	 our	 technical	 needs	 for	 the	 threat	 model	 in	 terms	 of	 malicious	

developers,	 we	 aimed	 to	 ensure	 that	 third-party	 users	 and	 potential	 auditors	 can	 easily	

verify	the	integrity	of	the	software	in	multiple	ways.	This	is	part	of	our	contribution	through	

this	 work.	 To	 achieve	 this,	 we	 transitioned	 the	 DarkMarket	 project	 to	 a	 more	 secure	

development	model	in	OpenBazaar	through	the	various	means	described	below.	

Testing	and	automated	build	

We	 have	 introduced	 an	 automated	 build	 system	 to	 OpenBazaar.	We	 used	 travis	 (Meyer,	

2014)	and	introduced	several	unit	tests	on	the	foundations	of	the	system	to	achieve	some	

verifiability.	 This	 ensures	 that,	 during	 review,	 no	 basic	 properties	 of	 the	 system	 are	

violated.	Such	violations	would	be	indicated	by	either	a	combined	suspicious	change	in	both	

the	code	and	the	tests,	which	we	hope	would	be	obvious,	or	an	indication	of	a	failing	build,	

which	we	disallow	by	policy	and	is	apparent	to	all	developers	and	users	in	an	obvious	way.	

The	tests	that	run	as	part	of	our	automated	build	include	a	coverage	test	with	coveralls	

to	ensure	that	we	maintain	good	and	improving	statistics	of	code	coverage	(Poisot,	2015).	

We	envision	this	will	drive	the	developers	of	the	project	to	continue	developing	in	a	testable	

way.	Finally,	we	have	included	tests	that	verify	the	coding	style	of	the	code	using	pylint	for	

static	 analysis	 of	 Python	 and	 jshint	 for	 static	 analysis	 of	 Javascript.	 Ensuring	 a	 healthy	

coding	 style	 makes	 the	 code	 more	 reviewable,	 auditable,	 and	 hence	 indirectly	 improves	

security.	 As	 part	 of	 this	 work,	 and	 with	 the	 important	 help	 of	 cryptography	 student	

Nikolaos	 Korasidis	 we	 contributed	 with	 several	 patches	 that	 visibly	 improve	 the	 coding	

style	of	the	project.	

Open	source	

We	have	successfully	pursued	a	migration	from	the	existing	AGPL	license	of	DarkMarket	to	

the	 freer	 MIT	 license.	 Part	 of	 this	 legal	 work	 was	 to	 collect	 consent	 from	 the	 existing	

DarkWallet	(unSYSTEM)	team	that	built	the	first	DarkMarket	version	before	it	was	forked	

into	OpenBazaar.	While	OpenBazaar	has	largerly	rewritten	most	if	not	all	of	the	old	code,	it	

was	 of	 philosophical	 and	 of	 tribute	 importance	 to	 us	 to	 consider	 the	 agreement	 of	 the	

original	 team.	Furthermore,	 a	 lot	of	 this	work	 involved	 communicating	 to	 the	 community	

the	 need	 for	 this	 change,	 which	 we	 did	 through	 our	 blog	 and	 through	 the	 relevant	

subreddit,	/r/openbazaar.	The	blogpost	announcement	is	available	in	the	appendix	of	this	

work.	 Based	 on	 the	MIT-licensed	 bitcoin	 core	 example,	we	 consider	 the	 transition	 to	 the	

MIT	license	an	important	step	to	support	the	security	of	OpenBazaar	and	to	encourage	the	

community	to	contribute	with	code	and	auditing.	
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Reviewing	process	

To	ensure	a	more	rigorous	development	and	deployment	process,	we	have,	as	part	of	our	

contributions	in	this	work,	pursued	a	transition	from	the	cow-boy-style	development	of	the	

original	DarkMarket	project	into	a	more	disciplined	master/develop	workflow.	

Development	now	happens	in	the	‘develop’	branch	and	the	‘master’	branch	is	used	only	

for	releases.	Security-wise,	this	plays	an	important	role,	as	it	allows	for	auditing	the	master	

branch	 more	 rigorously	 by	 third	 parties.	 Furthermore,	 this	 allows	 all	 commits	 on	 the	

master	branch	to	be	GPG-signed	by	the	release	maintainer.	

We	 have	 chosen	 to	 adopt	 Vincent	 Driessen’s	 master/develop	 model	 of	 development	

(Driessen,	2010).	This	requires	all	developers	to	maintain	their	own	forks	and	every	change	

in	the	develop	branch	passes	through	a	code	review	of	another	developer.	From	a	security	

point	of	view,	this	code	review	ensures	that	at	least	two	developers	see	every	line	of	code	

merged	 into	 the	 project,	 thus	 ensuring	 that	 a	 lone	 rogue	 developer	 cannot	 introduce	

malicious	code	to	the	marketplace.	
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Web-of-trust	

One	of	our	major	contributions	to	the	OpenBazaar	ecosystem	is	its	web-of-trust	system.	

The	 OpenBazaar	 web-of-trust	 maintains	 three	 important	 factors:	 First,	 it	 maintains	

strict	 pseudonymity	 through	 anonymizing	 mechanisms;	 second,	 it	 establishes	 true	 trust	

instead	of	identity	verification;	and	third,	it	is	completely	decentralized.	

The	OpenBazaar	web-of-trust	is	used	in	a	commercial	setting.	Trust	is	used	to	mitigate	

commercial	risk,	which	involves	losing	money.	Traditional	identity-verifying	webs-of-trust	

such	 as	 GPG	 are	 in	 purpose	 agnostic	 about	 the	 trustworthiness	 of	 the	 web-of-trust	

participants.	 That	 type	 of	 web-of-trust	 verifies	 the	 identity	 of	 its	 members	 with	 varying	

certainty.	However,	it	remains	to	the	individual	to	associate	trust	with	a	particular	person	

for	 a	 particular	 purpose:	 Whether	 they	 can	 be	 trusted	 with	 money,	 for	 example	

(Zimmerman,	1995).	

In	OpenBazaar,	the	participants	are	inherently	pseudonymous.	In	this	setting,	we	wish	

to	maintain	an	 identity	 for	each	node.	This	 identity	 is	 strictly	distinct	 from	the	operator's	

real-world	identity.	While	the	operator	may	choose	to	disclose	the	association	of	their	real-

world	 identity	 with	 their	 pseudonymous	 node	 identity,	 our	 network	 provides	 certain	

assurances	 that	 such	 pseudonymity	 will	 not	 be	 broken.	 Hence,	 pseudonymity	 is	 closely	

related	 to	 anonymity:	 Pseudonymity	 allows	 the	 creation	 and	 maintenance	 of	 an	 online	

"persona"	identity	with	a	certain	history;	anonymity	ensures	the	real-world	identity	of	the	

persona	operator	remains	unassociated	with	the	persona.	Hence,	our	goal	is	to	provide	both	

pseudonymity	and	anonymity.	

A	 true	web-of-trust	 is	a	directed	graph	where	nodes	are	 individuals	and	edges	signify	

trust	 relationships.	 In	 contrast	 to	 identity-verifying	webs-of-trust,	 in	 a	 true	web-of-trust,	

edges	do	not	signify	identity	verification;	they	signify	that	the	edge	target	can	be	trusted	in	

a	commercial	setting	transitively.	For	example,	when	trust	is	given	to	a	vendor,	it	signifies	

that	 the	 vendor	 is	 trustworthy	 and	 will	 not	 scam	 buyers	 by	 not	 delivering	 goods	 (for	

stronger	 assurances	 against	 such	 scams	 through	 self-enforcing	 contracts	 see	 page	 75).	

When	 given	 to	 a	 mediator,	 it	 signifies	 that	 the	 mediator	 is	 trustworthy	 and	 will	 resolve	

conflicts	 between	 transacting	 parties	 with	 a	 neutral	 point	 of	 view	 judgment.	 And	 when	

given	to	a	buyer,	it	signifies	that	the	buyer	is	trustworthy	and	will	pay	the	money	she	owes.	

Clearly,	trust	is	not	symmetric.	

While	identity	verification	is	a	concept	successfully	leveraged	by	individuals	for	secure	

communications	and	other	 transactions,	 it	 is	meaningless	 to	 try	 to	verify	 the	 identity	of	a	

pseudonymous	 entity,	 because	 a	pseudonymous	 entity	 is	 the	 cryptographic	 key	 in	 and	of	

itself,	 and	 therefore	 identity	 verification	 would	 constitute	 a	 tautology.	 It	 is	 therefore	
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required	to	adopt	a	different	meaning	of	"trust"	 than	 in	a	 traditional	setting	of	real-world	

identities.	 Hence,	 trust	 in	 this	 case	 signifies	 the	 trustworthiness	 of	 an	 individual	 in	 a	

commercial	 setting,	 their	 financial	 dependability,	 their	 reliability	 as	mediators,	 and	 their	

credibility	as	trust	issuers.	

A modified web-of-trust 

Webs-of-trust	historically	have	provided	a	setting	for	ensuring	correct	identity	association	

with	 asymmetric	 cryptographic	 keys.	 Traditional	 webs-of-trust	 are	 not	 applicable	 to	

networks	where	anonymity	is	a	desired	benefit.	We	propose	a	pseudonymous	web-of-trust	

where	agents	vote	for	the	trust	of	others.	By	disclosing	only	partial	topological	information,	

anonymity	is	maintained.	An	inductive	multiplicative	property	allows	propagation	of	trust	

through	the	network	without	full	disclosure.	We	introduce	additional	global	trust	measures	

(see	 page	 62)	 to	 thwart	 Sybil	 attacks	 through	 an	 artificial	 cost	 of	 identity	 creation	 and	

maintenance	and	to	bootstrap	the	network.	The	network	is	applied	to	a	commercial	setting	

to	manage	 risk.	Finally,	we	highlight	 certain	attacks	 that	 can	 compromise	 the	 trust	of	 the	

network	under	certain	assumptions.	

The	 aim	 of	 our	 web-of-trust	 is	 to	 construct	 a	 means	 to	 measure	 trustworthiness	

between	 individuals	 in	 a	 commercial	 setting	 where	 goods	 can	 be	 exchanged	 between	

agents.	The	goal	of	such	a	measure	is	to	limit,	as	much	as	possible,	the	risk	of	traders	in	an	

online	decentralized	anonymous	marketplace.		

Risk	 management	 in	 OpenBazaar	 is	 based	 on	 two	 pillars:	 On	 one	 hand,	 Ricardian	

contracts	 are	used	 to	 limit	 risk	 through	mediators,	 surety	bonds,	 and	other	means	which	

can	 be	 encoded	 in	 contract	 format.	 On	 the	 other	 hand,	 the	 identity	 system	 is	 used	 to	

establish	trust	towards	individuals.	

Trust	 management	 in	 OpenBazaar	 is	 established	 through	 two	 different	 types	 of	

mutually	 supporting	 systems;	 projected	 trust	 and	 global	 trust.	 Projected	 trust	 is	 trust	

towards	a	particular	individual	which	may	be	different	for	each	user	of	the	network;	hence,	

trust	 is	 "projected"	 from	a	viewer	onto	a	 target.	Global	 trust	 is	 trust	 towards	a	particular	

individual	which	 is	 seen	as	 the	 same	 from	all	members	of	 the	network.	Projected	 trust	 is	

established	through	a	pseudonymous	partial	knowledge	web-of-trust,	while	global	trust	 is	

established	through	proof-of-burn	and	proof-of-timelock	mechanisms.	

In	this	section,	we	describe	projected	trust,	which	is	our	basic	trust	system.	In	the	next	

sections,	we	augment	 it	with	global	 trust	and	unbreachable	contracts	 to	construct	 the	 full	

system.	
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A	naive	solution	

The	most	 obvious	 and	naive	 choice	 for	 a	 trust	 system	 in	 a	 commercial	 setting	 is	 a	 global	

voting	 system.	 While	 this	 solution	 is	 obviously	 flawed,	 it	 constitutes	 an	 important	

foundation	upon	which	the	next	ideas	are	built.	In	this	section	we	describe	this	idea	in	order	

to	determine	its	flaws,	which	are	solved	in	our	next	proposal.	

In	typical	centralized	systems,	 including	eBay	and	Bitcoin	OTC,	there	is	a	global	rating	

which	 is	determined	as	 the	sum	of	 the	 individual	 ratings	of	others	 towards	an	 individual.	

Attacks	of	fake	ratings	are	taken	care	in	the	system	in	an	ad	hoc	fashion	which	is	enabled	by	

the	centralized	nature	of	the	system.	

In	decentralized	systems,	Sybil	attacks	(Douceur,	2002)	make	this	situation	particularly	

more	 challenging	 and	 without	 an	 easy	 way	 to	 resolve.	 Hence,	 this	 naive	 solution	 is	

undesirable.	The	solution	to	this	problem	is	to	first	introduce	a	cost	of	identity	creation	and	

maintenance	 for	 global	 trust,	 and	 allow	 for	 the	 trust	 through	 edges	 to	 be	 projected.	We	

explore	the	projection	solution	below,	and	we	study	the	global	trust	later.	

Partial	topological	knowledge	

It	 is	 a	 conclusive	 result	 in	 the	 literature	 that,	 by	 analyzing	 graph	 relationships	 between	

several	 nodes,	 given	 certain	 associations	 between	 nodes	 and	 real	 identities,	 it	 becomes	

possible	 to	 deduce	 the	 real	 identities	 behind	 other	 nodes.	 In	 particular,	 if	 an	 attacker	 is	

given	 only	 global	 topological	 information	 about	 a	 web-of-trust	 as	 well	 as	 some	

pseudonymous	 identity	 associations	with	 real-world	 identities,	 they	 can	 deduce	 the	 real-

world	 identities	 of	 other	 nodes	 (Narayanan	&	 Shmatikov,	 2009).	 Hence,	 by	 revealing	 the	

complete	 topology	 of	 the	 web-of-trust	 graph	 between	 pseudonymous	 identities,	 an	

important	loss	of	anonymity	arises.	For	this	reason,	we	propose	a	web-of-trust	with	partial	

topological	knowledge	for	each	node.	Under	this	notion,	every	node	only	has	knowledge	of	

its	direct	graph	neighbourhood	–	they	are	aware	of	 the	direct	 trust	edges	that	begin	 from	

them	and	end	in	any	target.	This	does	not	disclose	any	information	about	the	total	graph,	as	

they	are	arbitrarily	selected	by	each	node.	These	ideas	have	been	explored	previously	in	the	

literature	as	friend-to-friend	networks	(Popescu,	2004).	

Trust	association	

In	 the	 pseudonymous	 web-of-trust,	 each	 node	 indicates	 their	 trust	 towards	 other	 nodes	

that	 they	 understand	 are	 trustworthy.	 This	 understanding	 can	 come	 from	 real-life	

associations	 among	 friends	 who	 know	 the	 real	 identity	 of	 the	 pseudonymous	 entity.	 An	

indication	 of	 trust	 does	not	 harm	anonymity	 in	 this	 context.	 This	 understanding	 can	 also	

come	 from	 external	 recommendations	 about	 vendors	 using	 friendly	 names.	 For	 instance,	
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under	a	 threat	model	 that	 trusts	 some	centralized	 third	parties,	 it	 is	possible	 to	establish	

trust	in	this	manner.	As	an	example,	if	a	vendor	is	popular	on	eBay,	and	a	buyer	trusts	eBay,	

the	vendor	can	disclose	their	OpenBazaar	user-friendly	name	on	their	eBay	profile,	and	the	

buyer	may	opt	to	trust	that	identity	directly.	

Trust	is	indicated	as	edges	with	a	source,	a	target,	and	a	weight.	The	weight	is	a	floating-

point	 number	 from	 -1	 to	 1,	 inclusive,	 with	 0	 indicating	 a	 neutral	 opinion,	 -1	 indicating	

complete	 distrust,	 and	1	 indicating	 complete	 trust.	 These	 can	be	 displayed	 in	 a	 graphical	

user	 interface	 in	 a	more	 simplistic	manner;	 for	 example,	 the	 canonical	 client	may	 opt	 to	

present	 a	 star-based	 interface	 for	 positive	 trust,	 and	 flagging	 for	 negative	 trust;	 or,	

alternatively,	 it	 may	 choose	 to	 present	 a	 simple	 thumbs-up	 and	 thumbs-down	 option,	

indicating	discrete	trust	of	1	or	-1	 if	employed,	or	0	 if	not	used.	These	trust	edges	remain	

local	and	are	not	disclosed	to	third	parties.	We	call	 the	direct	edges	"direct	 trust"	and	the	

weights	will	be	denoted	as	w(A,	B)	to	indicate	the	direct	trust	from	node	A	to	node	B.	

Trust	transitivity	

As	topological	knowledge	is	partial,	we	resolve	the	projected	trust	between	nodes	through	

induction.	 Let	 t(A,	 B)	 denote	 the	 projected	 trust	 as	 seen	 by	 node	 A	 towards	 node	 B.	

Projected	trust	is	then	defined	as	follows:	

𝑡 𝐴,𝐵 =  
𝑤 𝐴,𝐵 , if 𝑤 𝐴,𝐵 is defined and 𝑤 𝐴,𝐶 > 0

𝛼
𝑤(𝐴,𝐶)𝑡(𝐶,𝐵)

|𝑁 𝐴 |
!∈!(!) 

, otherwise 	

Where:	

• t(A,	B)	denotes	the	projected	trust	from	A	to	B.	

• w(A,	B)	denotes	the	direct	trust	from	A	to	B.	

• N(A)	denotes	the	neighbourhood	of	A;	the	set	of	nodes	to	which	A	has	direct	

trust	edges.	

• |N(A)|	denotes	the	size	of	the	neighbourhood	of	A.	

• α	is	an	attenuation	factor	which	is	constant	throughout	the	network.	

The	 meaning	 of	 the	 above	 equation	 is	 very	 simple:	 If	 Alice	 trusts	 Bob	 directly,	 then	

Alice's	trust	towards	Bob	is	clear.	If	Alice	does	not	trust	Bob	directly,	then,	since	we	wish	to	

retain	 only	 partial	 topological	 knowledge,	 Alice	 can	 deduce	 how	much	 to	 indirectly	 trust	

Bob	from	her	friends.	She	asks	her	friends	how	much	they	trust	Bob,	directly	or	indirectly;	

the	trust	from	each	friend	is	then	added	together	to	produce	the	projected	trust.	However,	

the	 trust	 contributed	 by	 each	 friend	 is	 weighted	 based	 on	 the	 local	 direct	 trust	 towards	

them;	if	Alice	trusts	Charlie	directly	and	Charlie	trusts	Bob	(directly	or	indirectly)	then	the	

projected	trust	that	Alice	sees	towards	Bob	is	weighted	based	on	her	trust	towards	Charlie;	
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for	example,	if	Alice	trusts	Charlie	a	little,	he's	not	allowed	to	vouch	for	Bob	a	lot.	Finally,	the	

projected	 trust	 is	 normalized	based	on	 the	number	 of	 friends	 one	has,	 so	 that	 it	 remains	

within	the	range	from	-1	to	1.	

The	condition	w(A,	C)	>	0	is	imposed	so	that	negatively	trusted	neighbours	are	unable	

to	 vouch	 for	 their	 trust	 towards	others	–	otherwise	 they	would	be	 able	 to	 lie	 about	 their	

trust	towards	others	if	they	knew	they	were	negatively	trusted	and	impose	onto	them	the	

opposite	trust	from	what	they	claim.	

The	attenuation	factor	α	is	used	to	attenuate	trust	as	it	propagates	through	the	network.	

Thereby,	nodes	further	away	from	the	source	gain	less	trust	if	more	hops	are	traversed.	We	

recommend	a	network-wide	parameter	of	α	=	0.4	as	 is	used	by	Freenet	 (Freenet	Web	Of	

Trust),	but	this	can	be	tweaked	based	on	the	network's	needs.	

This	simple	algorithm	assumes	that	trust	is	transitive;	if	Alice	trusts	Charlie	and	Charlie	

trusts	Bob,	 then	Alice	trusts	Bob.	This	 is	a	strong	assumption	and	may	not	always	hold	 in	

the	 real	 world.	 Nevertheless,	 we	 believe	 it	 constitutes	 a	 strong	 heuristic	 that	 allows	 a	

network	to	deduce	trust	with	partial	topological	knowledge.	

A	comparison	to	other	webs-of-trust	

It	 seems	 worthy	 to	 compare	 this	 approach	 to	 existing	 webs-of-trust	 to	 point	 out	 their	

differences.	In	contrast	to	GPG	(Zimmerman,	1995),	our	proposal	maintains	both	anonymity	

and	true	trust.	In	contrast	to	Freenet	(Freenet	Web	Of	Trust),	trust	is	used	for	commercial	

purposes	 and	 not	 just	 to	 fight	 spam.	 In	 contrast	 to	 Bitcoin	 OTC	 (Folkinshteyn)	 (Lee	 A.	 ,	

2012),	 the	network	 is	decentralized,	 the	 topology	 is	only	partially	known,	and	the	trust	 is	

only	projected	and	not	global.	

Certain	services	provide	webs-of-trust	 in	a	centralized	way,	but	 they	do	not	advertise	

them	 as	 such.	 eBay	 ratings	 (Mui,	Mohtashemi,	 Ang,	 &	 Szolovits,	 2001)	 (Standifird,	 2001)	

provide	webs-of-trust,	but	 the	 topology	 is	globally	known	and	the	platform	is	centralized.	

Facebook's	 social	 graph	 (Ugander,	 Karrer,	 Backstrom,	 &	 Marlow,	 2011)	 provides	 trust	

through	 friendships.	 Interestingly,	 Facebook's	 social	 graph	 allows	 partial	 topological	

knowledge	depending	on	the	privacy	settings	of	the	participants.	However,	centralization	is	

still	 a	 problem.	 In	 centralized	 solutions,	 pseudonymous	 identities	 through	 user-friendly	

names	 can	 also	 be	 maintained	 without	 a	 blockchain.	 The	 simplicity	 of	 implementation	

benefit	is	also	a	strong	one.	

Centralized	solutions	have	the	drawback	of	a	single-point-of-failure.	As	one	of	the	goals	

of	 OpenBazaar	 is	 to	 avoid	 Achilles'	 heels	 (single	 points	 of	 failure),	 centralized	 solutions	

become	unacceptable.	As	mentioned	in	the	sections	on	decentralizatoin,	the	purpose	is,	for	

instance,	 to	eliminate	 the	ability	 for	government	 intervention	 in	 the	web-of-trust	 through	
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secret	warrants	served	to	the	administrators	of	such	a	centralized	system	that	may	require	

the	handover	of	private	encryption	and	signing	keys.	

Bootstrapping	the	web-of-trust	

It	 is	 hard	 to	 establish	 trust	 targeting	 a	 new	 node	 on	 the	 network	 with	 no	 web-of-trust	

connections	to	it.	This	issue	is	addressed	in	the	Global	Trust	section.	However,	it	is	easier	to	

allow	new	users	entering	the	network	to	trust	individuals	who	have	established	some	trust	

through	 the	 web-of-trust.	 Bootstrapping	 trust	 is	 widespread	 practice	 in	 the	 literature	

(Clarke,	Sandberg,	Wiley,	&	Hong,	2001).	

This	bootstrap	can	be	achieved	by	including	a	hard-coded	set	of	OpenBazaar	node	key	

fingerprints	 that	are	known	to	be	good	 in	 the	distribution.	At	 the	beginning,	 these	can	be	

the	OpenBazaar	developers.	It	is	crucial	that	the	number	of	nodes	included	is	wide	so	that	

no	 individual	can	 influence	the	bootstrapped	trust.	Advanced	users	are	advised	to	 further	

diminish	 the	 weights	 of	 the	 direct	 edges	 to	 the	 bootstrap-trusted	 nodes	 and	 to	 include	

higher-weighted	edges	to	people	they	physically	trust.	

The	special	bootstrapping	nodes	must	be	configured	to	always	respond	to	trust	queries,	

regardless	of	whether	they	trust	the	query	initiator.	

This	 practice	 in	 particularly	 useful	 to	 guard	 against	 illicit	 uses	 of	 the	 network,	which	

have	been	experienced	in	similar,	centralized	but	anonymous	solutions	(Barratt,	2012).	By	

ensuring	the	bootstrap-trusted	nodes	highly	rate	only	non-illicit	traders,	it	is	expected	that	

the	network	will	 promote	 legitimate	uses	 of	 trade.	While	 black	market	 goods	 can	 still	 be	

traded,	the	user	will	be	required	to	opt-in	for	such	behavior	by	manually	introducing	trust	

to	nodes	who	highly	rate	trusted	black	market	vendors.	

Graph	separator	attack	

The	web-of-trust	security	strongly	depends	on	the	size	of	graph	separators.	Let	us	examine	

the	trust	as	seen	from	a	node	A	to	a	node	B.	Let	G'	be	the	graph	induced	from	the	web-of-

trust	graph	G	as	follows:	Take	all	the	acyclic	paths	from	A	to	B	in	G	whose	every	non-final	

edge	is	positive.	These	contain	nodes	and	edges.	Remove	all	nodes	and	edges	that	are	not	

included	in	any	such	path	to	construct	graph	G'.	Then	G'	is	the	induced	trust	graph	from	A	

to	B.	An	(A,	B)	separator	is	a	set	of	nodes	of	G'	which,	if	removed	from	the	graph,	make	the	

nodes	A	and	B	disconnected.	

We	 define	 an	 entity	 "controlling"	 a	 set	 of	 graph	 nodes	 as	 being	 able	 to	 arbitrarily	

manipulate	 the	reported	 t	and	w	 functions	when	 the	controlled	nodes	are	 inquired	about	

their	trust	beliefs.	
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We	 will	 prove	 the	 following	 theorem	 for	 any	 separator.	 The	 smallest	 separator,	

mentioned	below,	is	simply	easier	to	manipulate	by	a	malicious	party,	as	they	are	required	

to	control	a	smaller	set	of	nodes.	

Theorem:	A	malicious	 entity	 controlling	 the	 smallest	 (A,	B)	 separator	 on	 the	 induced	

graph	 G'	 will	 be	 able	 to	 change	 a	 negative	 projected	 trust	 to	 a	 positive	 projected	 trust	

towards	the	target	as	seen	on	the	original	graph	G.	

Proof:	Let	S	be	any	(A,	B)	separator	on	G'.	

	

FIGURE	14:	A	GRAPH	SEPARATOR	ON	THE	WEB-OF-TRUST	

Since	 the	 trust	 from	 A	 to	 B	 was	 originally	 negative,	 this	 means	 that	 A	 and	 B	 are	

connected	on	the	induced	graph	G'.	As	the	projected	trust	is	negative,	this	means	that	there	

are	direct	 negative	 edges	 in	G'	 from	 some	 intermediate	parties	B1,	B2,	 ...,	 Bn	 to	B;	 these	

edges	cannot	be	indirect,	as	indirect	edges	are	not	traversed	for	trust	discovery.	

We	will	show	that	the	trust	through	any	of	Bi	can	be	manipulated	to	be	positive.	Indeed,	

take	 some	 arbitrary	 Bi.	 Then	 there	 will	 exist	 some	 paths	 from	 A	 to	 B	 with	 Ci	 as	 their	

penultimate	node.	Take	some	arbitrary	path	P_i,j	from	A	to	B	through	Bi.	We	will	show	that	

this	 path	 can	 be	manipulated	 to	 produce	 positive	 trust.	 Since	 S	 separates	 A	 and	 B,	 then	

there	 must	 exist	 some	 element	 s	 in	 S	 that	 is	 also	 in	 P_i,j.	 Since	 s	 is	 controlled	 by	 the	

malicious	entity,	they	can	modify	their	claimed	direct	trust	towards	B	and	set	it	to	1.	They	

can	also	completely	ignore	any	indirect	trust,	including	Bi's	opinion:	

w(s,	B)	=	1	

Through	 this	 mechanism,	 every	 path	 can	 be	 manipulated	 through	 the	 control	 of	 S.	

Therefore,	 all	 paths	 ending	 in	 a	 negative	 edge	 can	 be	 eliminated.	 Since	 A	 and	 B	 were	

originally	connected,	they	will	remain	connected	through	this	trust	manipulation.	Finally,	at	
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least	one	path	ending	in	a	positive	edge	will	exist.	Therefore,	since	t(A,	B)	will	be	a	sum	of	

positive	terms,	A's	projected	trust	towards	B	will	be	bounded	from	below	as	follows:	

𝑡 𝐴,𝐵 ≥ 𝛼 
𝑡(𝐴, 𝑠)
|𝑁 𝑠 |

	

But	t(A,	s)	must	be	necessarily	positive.	Therefore,	t(A,	B)	must	also	be	positive	on	the	

induced	graph.	However,	projected	trust	on	G	is	only	based	on	results	on	the	(A,	B)	induced	

graph	G',	and	the	value	of	t(A,	B)	will	necessarily	be	the	same	as	seen	on	G.	n	

We	have	shown	 that	a	determined	attacker	 can	manipulate	 trust	 if	 they	control	 some	

separator	on	 the	network.	Therefore,	 it	 is	 crucial	 to	avoid	hub	nodes	 in	 the	network,	 and	

especially	 the	 existence	 of	 trust	 through	 only	 non-disjoint	 paths.	 As	 the	 web-of-trust	

develops,	 it	 is	 important	to	 form	trust	relationships	that	connect	nodes	from	regions	with	

long	distance.	

This	 result	 is	 expected;	 a	 separator	 of	 size	 1	 is	 essentially	 an	 Achilles'	 heel	 for	 the	

system.	 Such	 single-points-of-failure	 necessarily	 centralize	 the	 web-of-trust	 architecture	

and	completely	undermine	the	decentralized	design.	

Separator	attacks	and	more	rigorous	proofs	on	various	models	of	similar	broadcasting	

problem	 have	 been	 studied	 extensively	 in	 the	 literature	 (Pagourtzis,	 Panagiotakos,	 &	

Sakavalas,	2014).	

Topology	detection	through	queries	

As	one	of	the	web-of-trust	goals	is	to	disallow	malicious	agents	to	learn	the	global	network	

topology,	it	is	crucial	that	the	default	node	configuration	is	to	not	respond	to	trust	queries	

initiated	by	nodes	they	do	not	trust.	If	this	mechanism	is	not	employed,	a	malicious	entity	

can	 query	 all	 known	 network	 nodes	 and	 eventually	 deduce	 the	 global	 network	 topology	

easily.	 Using	 the	 disclosed	 topological	 information,	 the	 adversary	 can	 subsequently	

deanonymize	the	network	(Narayanan	&	Shmatikov,	2009).	

The	 exception	 to	 this	 is	 bootstrapping	 nodes,	 which,	 due	 to	 necessity,	 must	 be	

configured	to	answer	all	 trust	queries.	Some	ε-positive	 trust	can	be	used	as	 the	minimum	

threshold	of	trust	below	which	the	canonical	client	does	not	respond	to	queries.	To	ensure	

queries	are	authenticated,	imagine	a	query	from	A	to	C	about	whether	B	is	trustworthy.	The	

query	must	be	signed	with	A's	OpenBazaar	private	key	to	ensure	topological	information	is	

not	 revealed	 to	unauthorized	parties	 asking	 for	 it.	The	query	must	be	encrypted	with	C's	

OpenBazaar	 public	 key	 to	 ensure	 that	 nobody	 else	 can	 read	 it,	 even	 if	 the	 inquirer	 is	

authorised.	Finally,	the	response	must	be	signed	with	C's	private	key,	to	ensure	that	trust	is	
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not	 manipulated	 as	 it	 travels	 the	 network,	 and	 encrypted	 with	 A's	 public	 key,	 again	 to	

ensure	topological	confidentiality.	

In	this	sense,	most	trust	must	necessarily	be	mutual.	However,	the	topology	of	the	graph	

still	remains	directed,	as	the	trust	weights	can	be	different	in	either	direction.	
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Global	trust	

In	 addition	 to	 the	 projected	 trust	 system	 provided	 by	 the	 web-of-trust,	 it	 is	 desired	 to	

provide	some	global	trust	in	the	network.	This	serves	to	allow	the	network	to	function	with	

nodes	that	need	to	receive	trust,	but	are	not	associates	with	other	users	of	the	network,	or	

wish	 to	 remain	pseudonymous	even	 to	 their	 friends.	 In	 addition,	 this	 allows	 to	bootstrap	

the	network	for	someone	who	wishes	to	use	it	without	explicitly	trusting	any	entities.	

Global	 trust	 mimics	 the	 trust	 given	 in	 real-world	 transactions	 towards	 vendors	 that	

have	 invested	money	 in	 their	business,	 something	 that	can	be	physically	verified.	When	a	

buyer	 visits	 a	 physical	 shop	 to	 purchase	 some	 item,	 they	 trust	 that	 the	 shop	will	 still	 be	

there	 the	 next	 day	 in	 case	 their	 item	 is	 faulty;	 they	 do	 not	 expect	 the	 shop	 to	 disappear	

overnight1.	The	reason	 for	 this	expectation	 is	 that	 it	would	clearly	be	unprofitable	 for	 the	

vendor	 to	open	and	close	shops	every	day,	as	 it	 costs	money	 to	establish	a	store,	and	 the	

money	needed	to	establish	a	store	is	more	than	the	money	a	vendor	could	gain	by	selling	a	

faulty	product.	

Similarly,	 hotels	 ask	 for	 the	 passport	 of	 their	 residents	 (US	Department	 of	Homeland	

Security,	2009)	 in	order	to	be	able	to	 legally	hold	them	accountable	to	 limit	 financial	risk.	

While	 it	 is	 possible	 to	 create	 counterfeit	 passports	 every	 other	 day,	 it	 is	 economically	

irrational	to	do	so,	as	building	a	new	identity	is	more	costly	than	a	couple	of	hotel	nights.	

In	 these	 situations,	 rational	 agents	 are	 economically	 incentivised	 not	 to	 cheat	 on	

transactions	 through	 physical	 verification	 of	 proof	 that	 it	would	 be	 costly	 to	 forfeit	 their	

identity	–	either	to	create	a	counterfeit	passport	or	to	shut	down	a	physical	store	overnight.	

However,	 in	 a	 pseudonymous	 digital	 network,	 such	 mechanisms	 need	 to	 be	 established	

artificially.	We	 start	 by	 exploring	 some	 approaches	 to	 the	 problem	 that	 do	 not	meet	 our	

goal:	Proof-of-donation	and	proof-to-miner.	Subsequently,	we	introduce	a	mechanism	that	

solves	the	problem,	proof-of-burn.	Alternative	proposals	that	could	solve	the	problem	such	

as	proof-of-timelock	are	also	explored.	These	global	 trust	mechanisms	are	 then	combined	

with	projected	trust	to	build	a	total	trust	score.	

In	 all	 schemes,	 the	 person	 wishing	 to	 create	 trust	 for	 a	 pseudonymous	 node	 pays	 a	

particular	amount	of	money,	which	can	be	provably	associated	with	the	node	 in	question.	

The	differentiation	comes	from	whom	the	payment	is	addressed	to.	

																																																																				
1	Interestingly,	real-world	shops	do	sometimes	disappear	overnight	(Brabec,	1998)	
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Proof-of-donation	

In	 a	 proof-of-donation	 (also	 called	 "proof-of-charity"	 in	 the	 community)	 scheme,	 the	

pseudonym	owner	pays	any	desired	amount	to	some	organization,	which	is	hopefully	used	

for	 philanthropic	 or	 other	 non-profit	 purposes.	 The	 addresses	 of	 organizations	 that	 are	

allowed	to	receive	donations	would	be	hard-coded	in	the	canonical	OpenBazaar	client	and	

payments	 towards	 them	would	have	been	verified	by	direct	bitcoin	blockchain	 inspection	

by	 each	 client.	 A	 proof-of-donation	 first	 seems	 desirable,	 as	 money	 is	 transferred	 to	

organizations	for	good.	One	possible	scenario	could	include	funding	the	OpenBazaar	project	

itself	through	this	scheme.	

The	 technical	 way	 to	 achieve	 proof-of-donation	 is	 to	 simply	 make	 a	 regular	 bitcoin	

transaction	with	a	donation	target	as	its	output.	The	transaction	must	also	include	the	GUID	

of	the	target	OpenBazaar	identity	that	the	donation	is	used	for;	the	GUID	for	example	could	

be	included	in	an	ε-valued	proof-of-burn	output	(see	next	sections).	

Nevertheless,	 a	 proof-of-donation	 scheme	 is	 inadequate	 for	 our	 purposes,	 as	 it	

introduces	an	Achilles'	heel.	 In	particular,	 if	a	malicious	agent	is	able	to	access	the	private	

cryptographic	 keys	 of	 one	 of	 the	 donation	 targets,	 they	 are	 able	 to	 game	 the	 system	 and	

manipulate	 trust	 arbitrarily	 (Hearn,	 2013).	 Compromising	 the	private	 cryptographic	 keys	

can	be	 achieved	 through	various	ways	by	powerful	 agents;	 for	 example,	 a	 secret	warrant	

can	be	issued	by	a	government	ordering	that	the	private	keys	are	handed	to	the	court.	

	

FIGURE	15:	THE	PROOF-OF-DONATION	ATTACK	FEEDBACK	LOOP	

This	 attack	 would	 work	 as	 follows:	 The	 malicious	 agent	 first	 generates	 a	 new	

OpenBazaar	identity.	Subsequently,	they	donate	a	small	amount	of	bitcoin	to	the	donation	

target	 organization	 they	 have	 compromised,	 including	 their	 OpenBazaar	 node	 as	 their	

target	 identity	 in	 the	 proof-of-donation,	 thereby	 gaining	 a	 certain	 amount	 of	 trust.	 They	

then	 use	 the	 private	 keys	 they	 control	 to	 give	 the	money	 back	 to	 themselves,	 potentially	

through	 a	 certain	 number	 of	 intermediaries	 to	 avoid	 trackability.	 Finally,	 they	 repeat	 the	

process	an	arbitrary	amount	of	times	to	gain	any	amount	of	trust	desired,	thereby	gaming	

the	system.	
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The	attack	is	illustrated	in	Figure	15:	The	Proof-Of-Donation	attack	feedback	loop.	The	

figure	is	a	slight	abuse	of	notation;	there	are	no	feedback	loops	in	the	bitcoin	graph,	and	in	

fact	 loops	are	impossible	because	of	the	hashing	mechanism	used	to	address	transactions.	

We	use	the	feedback	notation	to	illustrate	that	the	coins	return	to	their	original	owner.	In	

reality,	the	attack	is	a	long	chain	of	transactions	where	the	owner	remains	the	same	entity	

controlling	different	cryptographic	keys.	

Proof-to-miner	

In	a	proof-to-miner	scheme,	the	payment	to	create	trust	for	an	identity	is	paid	to	the	miner	

that	 first	 confirms	 the	bitcoin	 transaction	which	 is	 the	proof.	 This	 scheme	 initially	 seems	

desirable,	 as	 there	 is	 no	 single	 entity	which	 can	 be	 compromised,	 and	 it	 incentivizes	 the	

network	to	mine	more,	thereby	making	bitcoin	more	secure	and,	in	turn,	OpenBazaar	more	

secure.	

Technically,	 proof-to-miner	 can	 be	 achieved	 by	 including	 an	 OP-TRUE	 in	 the	 output	

script	of	the	transaction	as	shown	in	Figure	16:	A	proof-to-miner	transaction,	where	we	use	

a	“*”	edge	subscript	to	denote	that	anyone	can	spend	it.	This	OP-TRUE	can	then	be	followed	

by	code	containing	information	about	the	node;	for	example,	the	code	could	contain	a	push	

of	a	constant	giving	the	GUID	of	the	OpenBazaar	node	followed	by	a	pop.	While	anyone	is,	in	

principle,	able	to	spend	the	output	of	the	given	transaction,	a	miner	is	incentivized	to	only	

include	 their	 own	 spending	 in	 their	 confirmation	 (Bitcoin	 Developers).	 That	 is,	 when	 a	

miner	 sees	 an	 anyone-can-spend	 transaction,	 they	 will	 include	 an	 immediate	 spending	

transaction	 in	their	attempted	block	that	 they	are	mining.	Again	 it	 is	 important	to	 include	

the	GUID	of	the	OpenBazaar	identity	in	the	transaction,	otherwise	the	proof	cannot	be	tied	

to	a	specific	OpenBazaar	node.	

	

	

FIGURE	16:	A	PROOF-TO-MINER	TRANSACTION	

	

Unfortunately,	 it	 is	 again	possible	 to	game	 this	 system.	The	system	 is	 susceptible	 to	a	

rogue	 miner	 attack.	 The	 rogue	 miner	 attack	 works	 as	 follows:	 The	 rogue	 miner	 first	

generates	 a	 new	 OpenBazaar	 identity.	 Subsequently,	 they	make	 a	 proof-to-miner	 bitcoin	

transaction	 with	 any	 amount	 they	 desire,	 but	 they	 keep	 the	 transaction	 secret,	 without	

broadcasting	 it	 to	 the	 network.	 They	 then	 perform	 regular	 bitcoin	 mining	 as	 usual,	 but	
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include	their	secret	proof-to-miner	transaction	in	their	block	confirmation	attempt,	without	

revealing	 the	 transaction	 to	 the	 network.	 Including	 an	 additional	 transaction	 does	 not	

increase	 the	cost	of	mining;	 therefore	 this	approach	can	be	employed	by	existing	rational	

miners.	If	they	succeed	in	generating	a	block	that	contains	their	proof-to-miner	transaction,	

they	broadcast	the	secret	transaction	on	the	network	together	with	their	mined	block	and	

they	 gain	 identity	 trust	 in	 the	 OpenBazaar	 network,	 and	 can	 use	 the	money	 again	 in	 the	

same	scheme	to	increase	their	trust	arbitrarily.	If	they	do	not	succeed	in	generating	a	block,	

they	keep	the	transaction	secret	and	double-spend	the	money	in	a	future	transaction	in	the	

same	scheme,	until	they	are	able	to	generate	a	block.	

Using	 this	method,	 a	miner	 can	 accumulate	 arbitrarily	 large	 amounts	 of	 trust	 (Todd,	

Trusted	 identities	 through	 provable	 coin	 expenditures,	 2012)	 for	 their	 identity,	 thereby	

breaking	 OpenBazaar	 security.	 However,	 a	 separation	 in	 the	 commit/donate	 steps	 of	 the	

proof-to-miner	 is	 in	 fact	 sufficient	 to	 overcome	 this	 problem	 (Todd,	 Purchasing	 fidelity	

bonds	by	provably	throwing	away	bitcoins,	2013).	

Proof-of-burn	

Proof-of-burn	 schemes	 have	 been	 in	 use	 by	 the	 cryptocurrency	 community	 in	 various	

settings	(CounterParty,	2014).	In	proof-of-burn,	the	payment	to	create	trust	for	an	identity	

is	paid	in	a	way	that	remains	unspendable.	Because	it	is	unspendable,	the	system	cannot	be	

easily	gamed	as	in	the	previous	approaches.	

Technically,	 proof-of-burn	 (P4Titan,	 2014)	 makes	 a	 regular	 bitcoin	 transaction	

including	 an	 OP-RETURN	 in	 the	 output	 script	 of	 the	 transaction.	 Again,	 the	 GUID	 of	 the	

OpenBazaar	identity	is	included	in	the	transaction	to	enable	blockchain	validation.	

Proof-of-burn	 makes	 Sybil	 attacks	 infeasible,	 as	 it	 requires	 the	 attacker	 to	 create	

multiple	high	trust	entities	in	the	network,	which	is	costly.	In	essence,	this	is	equivalent	to	

bitcoin's	proof-of-work	scheme	and	leverages	the	existing	blockchain	for	the	proof.	

Global	 trust	 based	 on	 proof-of-burn	 is	 based	 on	 how	 much	 money	 was	 burned	 to	

establish	a	particular	identity.	We	use	g(x)	to	denote	the	global	trust	derived	from	the	fact	

that	an	amount	x	has	been	spent	to	establish	the	trust	of	the	identity.	We	notice	that	x	is	the	

sum	 of	 all	 the	 amounts	 that	 has	 been	 provably	 burned	 for	 this	 particular	 identity.	 In	

addition,	 we	 notice	 that	 when	 a	 particular	 transaction	 output	 is	 used	 to	 establish	 trust	

towards	 some	 identity,	 this	 output	 is	 necessarily	 only	 associated	 with	 one	 identity.	

Verification	 of	 this	 proof	 can	 be	 done	 by	 the	 canonical	 OpenBazaar	 client	 through	 direct	

bitcoin	blockchain	inspection.	x(B)	is	a	function	of	the	person	whose	proof-of-burn	is	to	be	

determined,	B.	For	simplicity,	we	will	for	now	denote	it	as	x.	
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To	 determine	 the	 numerical	 trust	 for	 the	 global	 trust	 associated	 with	 a	 particular	

identity,	 we	 work	 as	 follows.	 First,	 we	 calculate	 x	 as	 the	 sum	 of	 verified	 proof-of-burn	

amounts,	in	bitcoin,	associated	with	the	target	identity.	

Next,	we	use	the	following	function	to	evaluate	the	trust	towards	the	identity:	

𝑔 𝑥 =  1 −  
1
2

!
!
	

Where	 x	 denotes	 the	 amount	 spent	 for	 the	 proof-of-burn	 g	 denotes	 the	 global	 trust	

associated	with	the	identity,	and	c	is	the	base	trust	cost	of	the	system.	

	

FIGURE	17:	THE	GLOBAL	TRUST	FUNCTION	FOR	C	=	0.4	

The	base	trust	cost	is	a	hard-coded	value	in	the	canonical	client	which	is	the	amount	of	

money	required	to	establish	basic	trust	in	the	system.	The	value	can	be	determined	based	

on	the	current	exchange	rate	of	bitcoin,	and	can	be	updated	in	the	future	depending	on	the	

network's	needs.	As	the	value	of	bitcoin	is	expected	to	rise,	it	is	expected	that	the	value	for	c	

will	 drop.	This	has	 the	 additional	 side	benefit	 that	historically	 older	 accounts	 accumulate	

more	trust	as	time	goes	by,	as	long	as	the	price	of	bitcoin	rises.	

To	 clarify	 the	 rationale	 of	 the	 above	 equation,	 note	 its	 following	 values,	 visualized	 in	

Figure	17:	The	global	trust	function	for	c	=	0.4:	

• g(0)	=	0.	A	pseudonymous	identity	that	has	not	provably	burned	coins	has	no	

global	trust.	

• g(c)	=	1/2.	A	pseudonymous	 identity	 that	has	spent	 the	base	 trust	cost	easily	

establishes	a	50%	global	trust.	

• lim! → ! 𝑔(𝑥) =  1.	Notice	that	it	takes	exponentially	more	money	to	approach	

100%	global	trust.	



67	

We	 recommend	 that	 the	 base	 trust	 cost	 is	 a	 very	 small	 affordable	 amount	 for	 any	

human	user.	This	will	make	the	cost	to	enter	the	network	small,	but	still	avoid	Sybil	attacks.	

Such	 schemes	 have	 long	 been	 used	 in	 the	 literature	 as	 proof-of-work	 to	 avoid	 denial	 of	

service	 attacks	 (Back,	 2002)	 (Naor	 &	 Dwork,	 1992)	 (Juels	 &	 Brainard,	 1999).	 Proof-of-

burning	has	the	same	benefits	as	proof-of-working,	as	it	delegates	the	proof-of-work	to	the	

bitcoin	blockchain.	

Almost-collision	coin	burning	

The	de	facto	standard	for	burning	coin	in	bitcoin	is	through	an	OP-RETURN	script	(Bitcoin	

Foundation,	2013).	This	script	has	the	important	advantage	that	it	contributes	to	bitcoin’s	

network	 scalability,	 as	 it	 allows	 full	 nodes	 to	 prune	 their	 UTXO	 when	 proof	 of	 burn	

transactions	 are	 detected.	 The	 mechanism	 employed	 to	 achieve	 that	 is	 simple:	 While	 a	

UTXO	is	maintained	for	all	unspent	regular	transactions,	when	an	OP-RETURN	transaction	

is	 received	 by	 a	 full	 node,	 the	 full	 node	 can	 avoid	 adding	 that	 transaction	 to	 the	 UTXO	

completely,	 as	 the	 OP-RETURN	 script	 constitutes	 a	 proof	 that	 the	 amount	 remains	

unspendable	and	hence	no	future	transaction	can	attach	this	dangling	output	to	its	input;	it	

is	hence	a	permanent	dangling	output	edge.	

	

	

FIGURE	18:	A	PROOF-OF-BURN	TRANSACTION	

	

OP-RETURN	 scripts	work	 by	 having	 the	 first	 operator	 of	 the	 bitcoin	 script	 be	 an	OP-

RETURN,	 indicating	 an	 immediate	 exception	 in	 the	 execution	 of	 the	 script,	 hence	making	

spending	 impossible.	After	the	 initial	OP-RETURN	operator,	 the	rest	of	 the	script	data	can	

contain	 information	 about	 why	 the	 coin	 was	 burned,	 so	 that	 different	 applications	 can	

demand	 different	 burning,	 and	 so	 that	 the	 association	 with	 an	 account	 is	 possible.	 For	

example,	 in	 OpenBazaar’s	 case,	 it	 is	 important	 to	 associate	 the	 burned	 amount	 with	 an	

OpenBazaar	GUID,	which	can	be	included	as	non-executable	code	after	the	OP-RETURN.	The	

fact	that	this	code	is	non-executable	follows	from	the	fact	that	it	will	never	be	executed	due	

to	the	earlier	exception.	Figure	18:	A	Proof-Of-Burn	transaction	shows	a	visualization	of	a	

proof-of-burn	 transaction;	 we	 use	 the	 ground	 symbol	 to	 indicate	 an	 unspendable	 output	

edge	from	a	transaction.	In	this	example,	25	BTC	are	burned	to	establish	an	identity.	
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However,	the	OP-RETURN	approach	lacks	certain	usability	properties	that	we	wished	to	

preserve	in	our	OpenBazaar	implementation.	In	particular,	for	simplicity	of	implementation	

and	usage,	as	well	as	for	separation	of	concern	reasons,	we	decided	that	OpenBazaar	does	

not	need	to	include	a	bitcoin	wallet	implementation.	Instead,	the	user	can	use	any	existing	

wallet	 software	 they	wish.	 Hence,	 to	make	 payments	 required	 by	 OpenBazaar,	 either	 for	

product	 purchases	 or	 for	 burn	 transactions,	 the	 user	 would	 have	 to	 utilize	 their	 wallet	

directly.	

Today,	wallets	do	not	have	the	ability	to	create	OP-RETURN	scripts	in	any	usable	way.	

The	only	way	to	create	burn	transactions	are	through	manual	 issuing	of	script	commands	

by	the	user,	which	can	be	confusing	or	impossible	to	execute	for	an	average	user	without	a	

programming	background.	Furthermore,	the	OP-RETURN	script	must	be	associated	with	an	

OpenBazaar	 GUID,	 something	 that	 makes	 the	 inclusion	 of	 this	 ability	 in	 existing	 wallets	

harder.	

For	these	reasons,	we	designed	an	alternative	mechanism	for	coin	burning	which	uses	

simple	 standard	 pay-to-pubkey-hash	 transactions.	 Furthermore,	 it	 is	 easy	 for	 regular	

wallets	to	create	such	transactions,	and	users	can	easily	understand	the	process	and	make	

the	payment	without	worrying	 that	 an	unnecessary	amount	of	money	will	be	 transferred	

and	without	requiring	special	programming	knowledge.	

Our	 schema	 for	 burning	 is	 based	 on	 the	 following	 cryptographic	 assumption,	 a	

resistance	to	an	almost-collision:	It	is	computationally	infeasible	to	calculate	two	hash	pre-

image	values	x1,	x2	such	that:	

𝐻 𝑥1 −  𝐻 𝑥1 < 𝜀	

Where	the	norm	denotes	the	Hamming	distance	of	two	strings	and	ε	is	a	small	constant,	

in	 our	 case	 1.	 This	 assumption	 is	 strongly	 supported	 by	 the	 fact	 that	 a	 hash	 function	 is	

cryptographically	secure;	 if	 this	equation	did	not	hold,	a	collision	would	have	been	found,	

modulo	one	bit,	which	indicates	the	hash	is	broken	up	to	almost	all	of	its	bits.	

Under	 this	 assumption	 for	 H	 =	 RIPEMD,	 our	 schema	 asks	 for	 the	 burner	 to	 take	 the	

ECDSA	 public	 key	 associated	 with	 their	 OpenBazaar	 identity	 and	 turn	 it	 into	 a	 bitcoin	

address	by	 following	 the	regular	schema	 for	1-prefixed	bitcoin	addresses.	Regular	bitcoin	

addresses	 are	 generated	 from	 regular	 bitcoin	 ECDSA	 keys	 as	 shown	 in	 Figure	 19:	 The	

standard	 bitcoin	 address	 generation	 algorithm.	 In	 comparison,	 the	 very	 similar	 provably	

unspendable	 address	 generation	 process	 is	 shown	 in	 Figure	 20:	 OpenBazaar	 provably	

unspendable	address	generation.	
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FIGURE	19:	THE	STANDARD	BITCOIN	ADDRESS	GENERATION	ALGORITHM	(COURTESY	ETOTHEIPI)	
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FIGURE	20:	OPENBAZAAR	PROVABLY	UNSPENDABLE	ADDRESS	GENERATION	

To	 generate	 an	 address	 that	 is	 provably	 unspendable,	 the	 burner	 starts	 with	 their	

ECDSA	OpenBazaar	 public	 key	 and	 applies	 a	 similar	 process	 to	 generate	 a	 RIPEMD	 hash	

from	 the	 signed	 public	 key.	 However,	 the	 burner	 perturbates	 the	 RIPEMD	 hash	 result	

before	base58-encoding	it.	Specifically,	they	flip	the	last	bit	of	the	hash	output.	The	rest	of	

the	process	follows	identically.	Finally,	the	burner	transfers	the	amount	of	coin	they	wish	to	

burn	to	this	generated	address.	Our	actual	implementation	of	this	process	in	OpenBazaar	is	

shown	in	Listing	3:	The	OpenBazaar	Proof-of-Burn	source	code,	where	we	use	the	obelisk	

bitcoin	library	for	base58	encoding	and	bitcoin	address	checksum	generation.	
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def	burnaddr_from_guid(guid_hex):	

				_LOG.debug("burnaddr_from_guid:	%s",	guid_hex)	

	

				prefix	=	'6f'	if	TESTNET	else	'00'	

				guid_full_hex	=	prefix	+	guid_hex	

				_LOG.debug("GUID	address	on	bitcoin	net:	%s",	guid_full_hex)	

	

				guid_full	=	guid_full_hex.decode('hex')	

				guid_prt	=	guid_full[:-1]	+	chr(ord(guid_full[-1])	^	1)	

				addr_prt	=	obelisk.bitcoin.EncodeBase58Check(guid_prt)	

				_LOG.debug("Proof-of-burn	address:	%s",	addr_prt)	

	

				return	addr_prt	

LISTING	3:	THE	OPENBAZAAR	PROOF-OF-BURN	SOURCE	CODE	

	

We	will	now	 illustrate	 the	properties	of	 correctness,	uniqueness,	 and	security	 for	 this	

scheme.		

Correctness.	 To	 verify	 the	 correctness	 of	 the	 burn,	 a	 third	 party	 performs	 the	 same	

transformation	 as	 the	 burner.	 They	 begin	 from	 the	 public	 ECDSA	 key	 of	 the	 OpenBazaar	

node	whose	 trust	 they	wish	 to	 verify	 and	 follow	 the	 bitcoin	 address	 generation	 process,	

applying	the	same	perturbation	as	the	burner	after	the	RIPEMD	stage.	Arriving	at	the	final	

bitcoin	 address,	 the	 verifier	 then	 checks	 the	 blockchain	 for	 money	 that	 was	 sent	 to	 this	

address.	This	concludes	that	the	burn	an	honest	burner	performs	will	be	correctly	verified	

by	an	honest	verifier.	

Uniqueness.	Under	the	assumption	that	RIPEMD160	is	a	cryptographically	secure	hash	

function,	 assumptions	 already	made	 by	 bitcoin,	 the	 uniqueness	 of	 burn	 address	 for	 each	

OpenBazaar	key	follows	directly.	

Security.	For	this	scheme	to	be	secure,	we	must	prove	that	 the	burned	money	cannot	

actually	be	spent	by	anyone.	Indeed,	if	the	money	were	spendable,	the	spender	would	have	

to	 know	 the	 private	 key	 associated	 with	 a	 public	 key	 which	 hashes	 to	 the	 perturbated	
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RIPEMD160	 value.	 However,	 this	 would	 allow	 the	 generation	 of	 an	 almost-collision	 in	

RIPEMD160,	 as	 the	 public	 key	 that	 can	 be	 used	 for	 spending	 the	 burned	money	 and	 the	

public	 key	 of	 the	 OpenBazaar	 identity	 would	 constitute	 pre-images	 of	 hashes	 that	 only	

differ	by	one	bit.	From	the	almost-collision	resistance	assumption,	we	conclude	that	this	is	

computationally	infeasible.	

The	 almost-collision	method	 of	 coin	 burning	 introduces	 scalability	 challenges	 for	 the	

bitcoin	software.	We	wish	to	make	two	remarks	in	regards	to	these	scalability	issues.	First,	

we	 feel	 a	 failure	 for	 bitcoin	 to	 scale	 given	 a	 potential	massive	motivated	 community	 (or	

others)	use	of	our	primitive	constitutes	a	security	problem	for	bitcoin	itself,	which	must	be	

addressed	without	requiring	players	to	behave	fairly	to	the	system.	This	could	be	a	problem	

for	bitcoin.	If	bitcoin	is	susceptible	to	such	denial-of-service	attacks,	the	use	of	bitcoin	as	a	

payment	system	must	be	reconsidered.	

Second,	because	we	support	the	bitcoin	ecosystem	and	wish	to	provide	suggestions	for	

solving	 its	 scalability	 issues,	 these	 transactions	 can	 in	 fact	 be	 eliminated	 if	 proof-of-burn	

transactions	 are	 accompanied	 by	 the	 pre-image	 before	 perturbation.	 The	 accompanying	

pre-image	constitutes	proof	that	the	money	is	unspendable,	similar	to	the	way	OP-RETURN	

scripts	constitute	proof	of	unspendability.	As	these	pre-images	will	be	publicly	available	on	

the	OpenBazaar	network,	in	case	OpenBazaar	becomes	largerly	adopted,	full	bitcoin	nodes	

can	utilize	the	OpenBazaar	network	to	detect	prunable	UTXO	outputs	which	perform	proof-

of-burn	through	almost-collision	pay-to-pubkey-hash	scripts.	

Regardless,	 the	 optimizability	 of	 the	 payment	 network	 is	 of	 little	 concern	 to	 its	

financially	 motivated	 users	 and	 its	 technical	 implementation	 details	 remain	 an	 open	

research	problem.	

However,	 since	 OpenBazaar	 has	 since	 switched	 to	 using	 SHA5121	 for	 hashing	 GUIDs	

and	because	we	wish	to	support	the	scalability	of	bitcoin,	we	recommend	that	a	migration	

to	OP-RETURN	is	done	when	usability	issues	permit.	

Proof-of-timelock	

While	proof-of-burn	 is	 equivalent	 to	proof-of-work,	we	propose	an	additional	mechanism	

that	can	be	used	separately	or	in	combination	with	proof-of-burn.	In	proof-of-timelock,	the	

proof-of-stake	ability	of	a	blockchain	is	leveraged	to	produce	a	system	that	eliminates	Sybil	

attacks	without	having	to	resort	to	the	destruction	of	money	or,	equivalently,	CPU	power.	

																																																																				
1	 Note	 that	 the	 switch	 to	 SHA512	 invalidates	 the	 security	 proof,	 since	 there	 is	 no	

cryptographic	statement	regarding	the	cross-collisions	between	SHA512	and	RIPEMD160.	
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In	 proof-of-timelock,	 the	 individual	 interested	 in	 establishing	 trust	 towards	 a	

pseudonymous	 identity	 provably	 locks	 a	 specific	 amount	 of	 money	 in	 a	 transaction	 that	

gives	the	money	back	to	them.	This	transaction	has	the	property	that	it	remains	unexecuted	

for	a	specific	predefined	amount	of	time.	However,	the	fact	that	the	transaction	is	going	to	

take	place	in	the	future,	the	exact	amount,	and	the	amount	of	time	of	the	lock	are	publicly	

verifiable.	

While	proof-of-burn	allows	 identities	 to	be	created	 in	a	way	 that	 is	 costly	 to	 recreate,	

proof-of-timelock	ensures	it	is	impossible	that	an	enormous	amount	of	identities	associated	

with	one	real-world	individual	can	co-exist	at	a	specific	moment	in	time.	Proof-of-timelock	

is	 a	 weaker	 insurance	 than	 proof-of-burn;	 proof-of-burn	 can	 be	 thought	 as	 proof-of-

timelock,	but	for	an	infinite	amount	of	time.	

We	predict	that	people	will	feel	considerably	more	comfortable	ensuring	their	identities	

through	proof-of-timelock	rather	than	proof	of	burn.	The	psychological	burden	associated	

with	money	destruction	may	not	be	an	easy	one	to	overcome.	

A	 Turing-complete	 blockchain	 such	 as	 Ethereum	 (Wood,	 2014)	 allows	 an	

implementation	of	this	mechanism.	Nevertheless,	we	are	reluctant	in	using	this	scheme,	as	

Turing-complete	 blockchains	 are	 yet	 to	 be	 proven	 feasible	 in	 practice	 and	 may	 pose	

problems	in	terms	of	scalability,	performance,	and	fees.	Another	mechanism	that	could	be	

used	 for	 this	 scheme	 is	 Bitcoin’s	 OP_CHECKLOCKTIMEVERIFY	 operator	 (Todd,	

OP_CHECKLOCKTIMEVERIFY,	2014).	

As	 such,	 we	 recommend	 proof-of-timelock	 as	 an	 alternative	 mechanism,	 but	 further	

research	 is	 needed	 to	 conclude	 whether	 it	 is	 feasible	 as	 an	 underlying	mechanism	 for	 a	

decentralized	anonymous	market.	It	is	worthy	noting	that	timelock-based	mechanisms	have	

been	 studied	 in	 theoretical	 cryptography	 in	 several	 settings	 (Rivest,	 Shamir,	 &	 Wagner,	

1996),	but	 the	practical	applications,	while	 intriguing,	 remain	 limited	 in	practice	as	 far	as	

implementation	is	concerned.	

Total	trust	

Based	on	the	projected	and	global	trust	metrics	presented	above,	we	propose	the	following	

measure	as	the	total	trust	towards	a	network	node:	

𝑠 𝐴,𝐵 =  
1
2

 (𝑡 𝐴,𝐵 +  𝑔 𝑥 𝐵 )	

The	projected	and	global	 trusts	 are	 added	 together	 to	produce	 the	 total	 trust	 as	 seen	

from	 A	 to	 B.	 The	 weights	 used	 here	 are	 50%	 for	 each,	 but	 it	 is	 advised	 to	 tweak	 these	

weights	based	on	empirical	evidence	during	development.	For	advanced	users,	the	weights	

can	be	customizable.	
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The	total	 trust	can	then	be	displayed	 in	the	user	 interface	of	 the	node	of	user	A	when	

she	 is	 viewing	 the	 profile	 of	 user	 B.	 Additional	 interface	 elements	 that	 are	 possible	 to	

include	can	be	the	exact	amount	of	money	spent	in	the	proof-of-burn	scheme,	as	well	as	the	

direct	 links	 yielding	 the	 cumulative	 projected	 trust	 for	 the	 particular	 target	 through	

induction.	
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Unbreachable	contracts	

Ricardian	contracts	

OpenBazaar	uses	 the	notion	of	Ricardian	contracts.	Ricardian	contracts	are	contracts	 that	

are	both	human-readable	and	machine-readable.	They	describe	a	trade	in	detail,	 including	

the	 product	 being	 sold,	 its	 description,	 the	 hash	 of	 images	 of	 the	 product,	 the	 price	 and	

dates,	and	other	information.	Ricardian	contracts	were	invented	by	Ian	Grigg	(Grigg,	2004)	

and	their	application	to	OpenBazaar	was	invented	by	Washington	Sanchez	(Sanchez,	2014).	

Ricardian	contracts	are	interesting	because	they	can	stand	in	traditional	court	systems	

if	disputes	are	filed.	This	is	important	as	we	transition	from	the	traditional	legal	system	to	

decentralized	legal	systems.	When	this	transition	is	fully	completed,	Ricardian	contracts	can	

be	modified	 to	be	only	machine-readable.	 In	 fact,	 as	explained	below,	Ricardian	contracts	

will	 become	 unnecessary	 as	 soon	 as	 everything	 in	 a	 contract	 is	 unbreachable.	

Unbreachability	 can	be	achieved	 for	 several	 ideas	 such	as	 the	promise	of	payment	or	 the	

promise	 of	 product	 delivery	 as	we	 illustrate	 below.	However,	 some	 disputes	 still	 require	

human	 arbitration.	 Examples	 include	 “product	 not	 as	 advertised”	 or	 “product	 arrived	

damaged”	 issues.	 This	 is	 the	 reason	 why	 Ricardian	 contracts	 contain	 all	 the	 details	 of	 a	

trade	so	that	disputes	can	later	be	resolved.	

In	 the	 next	 sections,	 we	 explore	 2-of-2	 and	 2-of-3	 trades.	 In	 the	 2-of-2	 trade,	 the	

inclusion	of	a	Ricardian	contract	is	only	useful	if	the	real	identity	of	participants	can	become	

known.	 In	 this	 case,	 traditional	 court	 systems	 can	 be	 used	 to	 resolve	 disputes.	 In	 2-of-3	

trades,	 an	 arbiter	 is	 introduced,	 and	 hence	 the	 necessity	 for	 a	 traditional	 court	 is	 not	

necessary,	nor	is	 it	necessary	to	reveal	the	true	identity	of	the	participants.	 In	cipherpunk	

settings	such	as	the	bitcoin	community,	the	property	of	maintaining	pseudonymity	even	in	

the	case	of	dispute	is	valuable.	

In	 the	 sections	 below,	 we	will	 not	 describe	 the	 technical	 details	 of	 the	 file	 format	 of	

Ricardian	contracts.	 	However,	a	few	words	about	the	structure	of	Ricardian	contracts	are	

necessary	to	understand	how	trades	can	work.	The	Ricardian	contract	 in	OpenBazaar	 is	a	

human-readable	JSON	file	initially	created	by	a	merchant.	The	merchant	includes	the	details	

of	 the	 product	 in	 the	 original	 JSON	 file,	 termed	 the	 “offer”,	 such	 as	 the	 product	 title,	

description,	 hash	 of	 images,	 price	 for	 the	 product,	 availability,	 and	 shipping	 options.	 An	

example	 is	 shown	 in	 Table	 1:	 An	 example	 ricardian	 contract.	 This	 offer	 contract	 is	 then	

signed	by	the	merchant’s	ECDSA	key	to	verify	its	authenticity.	
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TABLE	1:	AN	EXAMPLE	RICARDIAN	CONTRACT	

{"order":	{	

		"id":	{	

				"contact":	{	

						"email":	"dionyziz@gmail.com"	

				},	

				"guid":	"6c80b332c81a880c1c0e06982d4ae94ac00e0bd5",	

				"handle":	"dionyziz",	

				"onename":	"dionyziz",	

				"pubkeys":	{	

						"bitcoin":	"1vXhpZpeDWLmp7vN7k52x3WwRSZK3DT6X",	

						"pgp":	"45DC00AEFDDF5D5CB988EC862DA450F3AFB046C7"	

				},	

				"role":	"customer"	

		},	

		"metadata":	{	

				"category":	"service",	

				"category_sub":	"invitation	to	tender",	

				"expiry":	"3	hours"	

		},	

		"order":	{	

				"comments":	"Deliver	to	my	co-worker	before	she	gets	to	work.",	

				"date":	"2015-07-04	09:00:00",	

				"delivery_address":	"900	W	Eddy	St,	Chicago,	IL	60613,	US",	

				"item":	"Chocolate	cupcake	box",	

				"pickup_address":	"1060	W	Addison	St,	Chicago,	IL	60613,	US",	

				"quantity":	1,	

				"type":	"delivery"	

		}	

	},	

	"signatures":	{	

			"bitcoin":	"HEfKMskTI7tfKEMRF36AxYaQ1OtUsd...",	

			"pgp":	"iQIcBAEBCAAGBQJWWlggAAoJELNinf0..."	

	}	

}	
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When	a	user	browses	the	products	of	a	merchant,	they	receive	these	signed	offers	and	

the	 OpenBazaar	 client	 parses	 them	 to	 display	 the	 products	 in	 question.	 When	 the	 user	

wishes	to	purchase	a	product,	the	amend	the	contract	with	their	own	details,	such	as	their	

shipping	address	and	amount,	sign	it,	and	send	it	to	either	the	merchant	directly	(in	case	of	

2-of-2	trades)	or	the	arbiter	(in	case	of	2-of-3	trades).	In	case	of	an	arbiter,	the	arbiter	signs	

the	contract	including	their	own	details,	such	as	what	they	are	exactly	willing	to	arbitrate,	

and	sends	it	to	the	merchant	to	fulfill	the	order.	

Contracts	are	very	general.	They	can	be	about	physical	goods,	digital	goods,	services	(as	

seen	 in	 the	 example	 above),	 lending,	 gambling,	 financial	 agreements,	 or	 decentralized	

replacement	markets	for	AirBNB	and	Uber	(La'Zooz	Developers,	2015).	

Game	theoretic	primitives	

In	the	next	sections,	a	“fair	Nash	equilibrium”	is	a	Nash	equilibrium	in	which	the	purpose	of	

the	game,	as	designed	by	the	game	designer,	 is	achieved;	in	our	case,	a	trade	is	completed	

successfully	 and	 both	 parties	 are	 satisfied	 (i.e.	 the	 merchant	 receives	 payment	 and	 the	

buyer	receives	the	product).	

For	the	following	theorems,	we	are	dealing	with	rational	players	that	will	always	play	to	

maximize	their	utility;	in	cases	of	markets,	their	financial	profit.	We	introduce	the	notion	of	

ε-good	 rational	 players.	 These	players	prefer	 a	 strategy	which	 is	 arbitrarily	designated	as	

the	 status	 quo	 strategy	 at	 the	 definition	 of	 the	 game	 over	 other	 alternative	 strategies,	

provided	 the	alternative	strategies	do	not	have	better	utility.	 In	particular,	when	multiple	

strategies	maximize	the	utility	function	for	the	player	in	question,	the	player	will	select	the	

status	quo	strategy.	

This	 preference	 can	 be	 modelled	 by	 introducing	 some	 arbitrarily	 small	 positive	

constant	ε	and	modifying	the	utility	function	to	be	more	favourable	by	ε	for	the	status	quo	

strategy.	Then,	we	will	say	that	ε-good	rational	players	will	prefer	a	strategy	S	if	there	exists	

some	δ	>	0	such	that	 for	all	ε	 for	which	0	<	ε	<	δ,	 if	 the	status	quo	strategy	 is	modified	to	

include	a	 favourable	adjustment	ε	 to	 the	utility	 function,	 then	a	 classically	 rational	player	

will	choose	strategy	S.	

These	 strategies	 are	 selected	 to	 correspond	 to	 behavior	 which	 is	 considered	 socially	

acceptable;	in	particular,	we	choose	the	status	quo	strategies	to	be	those	strategies	in	which	

a	 player	 lets	 the	 other	 player	win	 if	 they	 do	not	 have	 anything	 to	 lose.	 These	 are	 a	 good	

model	for	real	human	behavior,	as	people	tend	to	play	fair	when	there	is	no	reason	to	play	

unfair.	Specifically,	for	markets	we	will	designate	the	status	quo	strategy	to	be	the	strategy	

in	which	the	buyer	receives	their	purchased	product	and	the	seller	receives	their	payment.	
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This	assumption	allows	us	 to	argue	 that	 the	 status	quo	games	constitute	unique	Nash	

equilibria	 under	 the	 ε-goodness	 assumption.	 Without	 the	 ε-goodness	 assumption,	 while	

status	quo	strategies	are	Nash	equilibrium	strategies,	they	are	not	the	only	ones,	and	hence	

the	 assumption	 is	needed	 to	 explain	 the	behavior	of	players	who	 choose	 a	 “fair”	 strategy	

when	there’s	nothing	to	 lose.	While	 the	ε-good	notion	models	our	real-world	 intuition	 for	

player	behavior,	this	formalization	does	not	say	anything	more	than	this:	When	we	require	

ε-goodness,	our	Nash	equilibrium	 is	not	unique;	 if	we	do	not	require	 it	and	ε-bad	players	

can	be	tolerated,	our	Nash	equilibrium	is	unique.	

The	 idea	 of	 ε-goodness	 differs	 from	 the	 traditional	 game	 theoretic	 notion	 of	 an	 ε-

Equilibrium.	In	our	considerations,	the	status	quo	solutions	are	true	equilibria;	ε-goodness	

is	only	required	for	proof	of	uniqueness.	

In	the	following	theorems,	we	will	show	that	closed	systems	utilizing	2-of-2	and	2-of-3	

multisig	transactions	between	2	and	3	ε-good	rational	agents	respectively	are	unique	Nash	

equilibria	 in	 which	 nobody	 is	 incentivized	 to	 steal	 from	 the	 other.	 These	 situations	 are	

desired	 for	 a	 decentralized	 trading	 system,	 as	 they	 indicate	 stability	 and	 ensure	 trust	

towards	the	system	is	provided	to	users.	

In	our	game-theoretic	modeling	of	the	marketplace,	we	treat	a	trade	as	a	game	between	

rational	agents	who	both	gain	some	utility	value	from	successfully	completing	a	trade.	This	

utility	can	be	arbitrarily	small,	but	is	a	non-negative	value,	and	so	players	are	incentivized	

to	 trade;	we	will	 denote	 this	by	λ.	 In	 the	 edge-case	of	 the	utility	 function	being	valued	at	

zero,	players	are	not	incentivized	to	trade,	and	so	will	prefer	not	to	enter	in	a	game.	This	λ	

parameter	 is	 the	 value	 gained	 from	 trading:	 The	 merchant	 gains	 because	 they	 sell	 the	

product	 for	more	 than	what	 they	 spend	 to	build	 it;	 and	 the	buyer	gains	because	 they	 see	

utility	in	the	product	they	purchase.	

2-of-2	trades	

The	 simplest	 form	 of	 self-enforcing	 contracts	 in	 trades	 can	 be	 achieved	 through	 2-of-2	

multisig	trades	(Spilman,	2013).	In	this	work,	we	provide	a	game-theoretic	analysis	of	the	

scheme	and	compare	it	with	alternative	suggested	schemes.	

The	2-of-2	trading	scheme	is	the	simplest	self-enforcing	contract	for	trades.	It	works	as	

follows.	A	buyer,	Alice,	wishes	to	buy	a	product	P	from	a	vendor,	Bob,	 for	a	price	v.	To	do	

this,	Alice	creates	a	transaction	with	a	single	input	of	value	v.	

The	transaction	has	a	single	output	of	value	v.	The	output	is	a	2-of-2	multisig	script,	i.e.	

it	 requires	a	 threshold	value	of	2	keys	 to	 sign	 the	output	 for	 it	 to	be	 released.	These	 two	

keys	are	Alice’s	key	and	Bob’s	key.	
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FIGURE	21:	THE	2-OF-2	TRADE	IN	THE	COMMIT	STEP	

	

The	trade	then	works	as	follows:	In	the	commit	step,	Alice	creates	the	2-of-2	transaction	

and	 pays	 a	 value	 v	 into	 it.	 Alice	 then	 publishes	 this	 transaction	 to	 the	 blockchain	 and	

provides	 it	 as	 a	 proof-of-payment	 to	 Bob	 as	 seen	 in	 Figure	 21:	 The	 2-of-2	 trade	 in	 the	

commit	step;	at	this	stage,	the	2-of-2	multisig	output	is	unspent.	In	the	verification	step,	Bob	

verifies	that	the	proof-of-payment	is	valid	by	examining	the	transaction	on	the	blockchain.	

He	ensures	that	the	output	script	is	a	2-of-2	multisig	script,	that	he	hasn’t	seen	this	proof-of-

payment	before,	and	that	one	of	his	own	public	keys	 is	 included	 in	 the	multisig.	Bob	then	

ships	 the	 product	 P	 to	Alice.	 In	 the	 finalization	 step,	 once	Alice	 receives	 the	 product,	 she	

signs	off	 the	2-of-2	multisig	script	 to	an	output	address	owned	by	Bob.	Bob	then	adds	his	

own	 signature	 to	 the	 2-of-2	 multisig	 script	 that	 sends	 the	 money	 to	 him,	 and	 thereby	

receives	the	money.	This	concludes	the	correct	execution	of	the	protocol	as	seen	in	Figure	

22:	The	2-of-2	Trade	after	finalization.	

	

	

FIGURE	22:	THE	2-OF-2	TRADE	AFTER	FINALIZATION	

	

If	Alice	wishes	to	play	unfairly,	she	would	want	to	receive	the	product	without	paying	

for	 it.	 In	 this	 rogue	 scenario,	 if	 Alice	 tries	 to	 convince	 Bob	 to	 send	 the	 product	 without	

properly	creating	a	2-of-2	multisig	transaction,	Bob	will	be	able	to	detect	this	and	will	not	

send	 out	 the	 product.	 On	 the	 other	 hand,	 if	 Alice	 creates	 a	 valid	 2-of-2	 transaction,	 her	

money	 is	 committed	 to	 buying	 the	 product	 and	 she’s	 unable	 to	 double-spend	 it	 once	 it	

enters	 the	 public	 blockchain.	 Therefore,	 the	 buyer	 cannot	 receive	 the	 product	 without	

paying.	

If	Bob	wishes	to	play	unfairly,	he	would	want	to	receive	the	money	without	sending	out	

the	product.	 In	 this	rogue	scenario,	Bob	would	wait	 for	 the	2-of-2	 transaction.	Bob	would	

then	 desire	 to	 receive	 the	 money	 without	 sending	 the	 product.	 However,	 the	 2-of-2	
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transaction	binds	the	money	until	Alice	signs-off	the	finalization.	Unless	Alice	finalizes	early,	

Bob	will	 not	 get	 paid	 until	 the	 product	 is	 delivered.	 Therefore,	 the	 seller	 cannot	 receive	

payment	without	delivery.	

However,	 this	does	not	 ensure	 that	 an	honest	 agent	will	 receive	 compensation	or	 the	

product.	Indeed,	on	one	hand,	if	Alice	is	an	honest	buyer,	she	may	lose	money	in	this	game.	

This	would	work	as	follows.	If	Bob	the	vendor	puts	up	a	fake	product	for	sale,	Alice	can	be	

tricked	 in	 locking	 up	 her	 money	 in	 a	 2-of-2	 multisig	 transaction	 which	 remains	 stale	

forever,	thereby	burning	her	coins	without	delivery.	While	this	scenario	is	possible	in	the	2-

of-2	 scheme,	 there	 is	 no	 incentive	 for	 Bob	 to	 play	 the	 rogue	 strategy.	 As	 such,	 the	 fair	

strategy	constitutes	a	Nash	equilibrium,	but	not	the	only	Nash	equilibrium:	An	alternative	

Nash	equilibrium	allows	Bob	 to	 advertise	non-existent	products	without	delivering	 them.	

However,	this	does	not	provide	any	financial	gain	for	Bob.	

On	 the	 other	 hand,	 an	 honest	 vendor	 is	 not	 ensured	 to	 receive	 payment	 for	 their	

services	either.	This	would	work	as	follows.	If	Alice	locks	her	funds	in	a	2-of-2	multisig	and	

provides	 it	 as	 proof-of-payment	 to	 Bob,	 Bob	 can	 deliver	 the	 product.	 However,	 nothing	

ensures	Bob	 that	Alice	will	 finalize	 the	 transaction	 to	 release	 the	 funds	 to	Bob.	 Alice	 can	

simply	walk	 away	with	 her	 product	 and	 leave	 the	money	 hanging.	While	 this	 scenario	 is	

possible	in	the	2-of-2	scheme,	there	is	no	incentive	for	Alice	to	play	the	rogue	strategy.	As	

such,	 the	 fair	 strategy	 again	 constitutes	 a	 Nash	 equilibrium,	 but	 not	 the	 only	 Nash	

equilibrium:	The	 alternative	Nash	 equilibrium	allows	Alice	 to	 keep	 the	money	 locked	up.	

However,	this	does	not	provide	any	financial	gain	for	Alice.	

In	our	assumption	of	ε-good	agents	who	receive	some	ε	positive	utility	from	playing	the	

status	quo	strategy,	this	game	is	an	acceptable	way	to	trade	goods.	In	practice,	trust	in	the	

system	 can	 be	 improved	 by	 making	 the	 default	 strategy	 the	 status	 quo	 strategy	 in	 the	

implementation,	making	it	easier	for	the	user	to	play	the	status	quo	strategy	and	difficult	for	

them	 to	play	 the	unfair	 strategies.	 For	 example,	 finalization	 can	occur	 automatically	 after	

two	weeks,	unless	the	buyer	indicates	that	they	have	not	received	the	product.	

	

TABLE	2:	THE	2-OF-2	TRADE	GAME	

Buyer	\	Seller	 No	game	 Doesn’t	ship	 Ships	

No	game	 v,	v	 	 	

Doesn’t	finalize	 	 0,	v	 v	+	λ,	0	

Finalizes	 	 0,	2v	+	λ	 v	+	λ,	v	+	λ	
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The	game	is	summarized	in	Table	2:	The	2-of-2	trade	game.	The	utility	values	represent	

the	total	amount	of	assets	owned	by	the	players	after	 the	trade	(money	+	product	value);	

initially,	Alice	starts	with	v	assets,	the	money	and	Bob	starts	with	v	assets,	the	product.	The	

green	strategy	 is	 the	status	quo	strategy;	after	 trading,	 the	value	held	by	both	parties	 is	v	

each.	The	red	strategy	represents	a	rogue	seller	who	doesn’t	have	a	product	for	sale;	for	this	

player,	it	is	equally	preferable	not	to	play.	The	blue	strategy	represents	a	rogue	buyer	who	

doesn’t	finalize;	for	this	player	equally	preferable	to	finalize.	The	orange	strategy	is	cannot	

occur	under	the	rules	of	the	game.	

However,	 this	 game	 is	 clearly	 unsatisfactory	 and	 unsettling	 for	 large	 financial	

transactions,	especially	when	real-world	players	who	want	to	break	trust	to	the	system	are	

introduced.	In	later	scenarios,	we	propose	games	in	which	the	only	Nash	equilibrium	is	the	

fair	 strategy,	even	without	 requiring	ε-goodness	 from	agents.	 Ideally,	we	would	wish	 that	

dishonest	players	would	be	punished	 financially,	which	we	are	able	 to	achieve	with	MAD	

trades.	Nevertheless,	we	first	explore	a	simpler	scheme,	that	of	2-of-3	trades.	

Another	 issue	with	 the	 2-of-2	 trade	 is	 that,	 from	 a	 game	 theoretic	 point	 of	 view,	 the	

default	 in	the	payment	finalization	could	be	manipulated	by	the	buyer	in	what	we	call	the	

“terrorist	 negotiation	 attack”.	 Indeed,	 assume	 a	 buyer	 and	 seller	 in	 a	 one-shot	 game	 of	

trade.	The	buyer	transfers	the	money	to	a	multisig	account	which	they	provide	as	proof-of-

payment.	 Subsequently,	 the	 seller	 sends	out	 the	product.	Upon	 receiving	 the	product,	 the	

buyer	reveals	to	the	seller	that	they	do	not	wish	to	finalize	the	transaction.	A	rational	seller	

and	 buyer	 could	 then	 come	 to	 a	 mutual	 agreement	 for	 any	 finalization.	 In	 particular,	 a	

rational	seller	would	agree	to	a	finalization	where	any	small	positive	ε	value	is	transferred	

to	them	with	the	rest	of	the	money	going	to	the	buyer.	On	the	other	hand,	a	rational	buyer	

would	also	agree	to	a	finalization	where	they	receive	any	small	positive	ε	value.	Under	such	

circumstances,	 it	 is	clearly	not	a	rational	strategy	for	the	buyer	to	finalize	the	transaction,	

but	they	would	prefer	to	work	out	a	deal.	This	is	clear	from	the	orange	square	in	the	game	

theory	strategy	matrix	above.	

However,	human	nature	allows	us	to	assume	that	such	“terrorist	negotiation”	deals	will	

not	be	accepted.	As	long	as	the	party	at	stake	does	not	agree	to	buy	into	such	an	unfair	deal,	

there	is	no	incentive	for	a	rational	agent	to	play	unfairly.	

2-of-3	trades	

The	 2-of-2	 trade	 game	 described	 above	 is	 satisfactory	 under	 the	 ε-goodness	 assumption.	

However,	it	undermines	trust	in	the	system	and	is	worthy	of	improvement.	
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A	 first	 improvement	 in	 the	 2-of-2	 trade	 is	 the	 introduction	 of	 an	 arbiter.	 While	 the	

arbiter	 introduction	 constitutes	 a	 trusted	 third	 party,	 it	 is	 significant	 that	 we	 allow	 the	

trading	 parties	 to	 choose	 any	 arbiter	 they	wish.	Hence,	 there	 is	 no	 central	 authority	 that	

controls	 the	 arbitration	 in	 all	 transactions.	This	differentiates	 the	OpenBazaar	 arbitration	

model	 from	 arbitration	 models	 developed	 in	 centralized	 bitcoin	 marketplaces	 such	 as	

Evolution	where	the	central	market	took	the	role	of	the	arbiter	(OpenBazaar	Team,	2015).	

	

	

FIGURE	23:	A	CORRECTLY	COMPLETED	2-OF-3	TRADE	AFTER	FINALIZATION	

	

In	the	2-of-3	trade,	we	work	similarly	to	the	2-of-2	trade	model,	except	that	the	multisig	

is	a	2-of-3	multisig	where	a	third	party,	the	arbiter,	is	introduced.	When	Alice	and	Bob	play	

as	 expected,	 the	 stages	 of	 the	 game	 are	 the	 same	 as	 in	 the	 2-of-2	 trade	 protocol	 and	 the	

transaction	 graph	 after	 finalization	 is	 shown	 in	 Figure	 23:	 A	 correctly	 completed	 2-of-3	

Trade	after	finalization.	The	signing	parties	in	the	spent	multisig	output	are	highlighted	in	

orange.	

	

	

FIGURE	24:	DISPUTE	RESOLUTION	THROUGH	2-OF-3	TRADE	ARBITRATION	WITH	FORCED	FINALIZATION	

	

In	case	of	dispute,	the	arbiter	is	allowed	to	make	a	decision.	In	particular,	the	arbiter	is	

allowed	 to	 finalize	 the	 transaction	by	signing	 the	 transaction	 together	with	 the	vendor	as	

seen	 in	 Figure	 24:	 Dispute	 resolution	 through	 2-of-3	 Trade	 arbitration	with	 forced	

finalization.	 In	 this	 case	we	 say	 that	 the	 finalization	 step	 is	 forced.	Dispute	 resolution	 can	

also	 result	 in	 a	 reversal	 of	 the	 trade	where	 the	 arbiter	 is	 given	 the	 ability	 to	 reverse	 the	

transaction	by	signing	the	transaction	together	with	the	buyer	as	seen	in	Figure	25:	Dispute	

resolution	 through	 2-of-3	 Trade	 arbitration	 with	 reversal.	 In	 both	 cases,	 the	 arbiter’s	

decision	can	be	made	 through	proceedings	 similar	 to	 traditional	 court	 rulings,	depending	

on	 the	 particular	 arbiter	 policies	 that	 both	 parties	 pre-agree	 on.	 Such	 procedures	 could	

involve	 the	 presentation	 of	 evidence	 by	 the	 transacting	 parties.	 For	 example,	 the	 buyer	

could	present	evidence	that	the	product	arrived	damaged.	
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FIGURE	25:	DISPUTE	RESOLUTION	THROUGH	2-OF-3	TRADE	ARBITRATION	WITH	REVERSAL	

	

Under	normal	circumstances,	however,	 the	arbiter	does	not	 involve	 themselves	 in	 the	

trade.	

The	 2-of-3	 trade	 is	 unsatisfactory	 because	 of	 the	 third-party	 trust	 requirement.	 The	

arbiter	is	not	enforced	to	act	as	they	advertise	and	could	in	fact	collude	with	the	buyer	or	

the	seller	 to	provide	an	unfair	outcome.	 In	particular,	 the	danger	 is	 for	vendors	who	own	

both	a	vendor	and	an	arbiter	account	in	a	way	that	appears	independent.	These	vendors	can	

then,	 for	example,	easily	choose	to	default	on	their	delivery	and	still	get	paid.	 In	a	similar	

manner,	 large-scale	 buyers	who	 control	 both	 a	 buyer	 account	 and	 in	 addition	 an	 arbiter	

account	can	easily	get	away	by	receiving	products	without	proper	payment.	While	it	could	

be	 argued	 that	 the	 reputation	 of	 the	 arbiter	 is	 at	 stake,	 the	 problem	 of	 decentralized	

anonymous	 reputation	 has	 not	 yet	 been	 solved,	 as	 is	 clear	 by	 the	 current	work.	 Some	 of	

these	 problems	 may	 be	 partially	 mitigated	 using	 timelocks	 (Todd,	

OP_CHECKLOCKTIMEVERIFY,	2014).	

Because	of	their	simplicity	and	usability,	2-of-3	multisig	trades	have	been	implemented	

in	OpenBazaar.	

MAD	trades	

The	2-of-2	and	2-of-3	trades	are	both	unsatisfactory	for	different	reasons	each.	The	2-of-2	

trade	 is	 vulnerable	 to	 ε-bad	agents	who	wish	 to	harm	 the	 trust	 in	 the	 system.	The	2-of-3	

trade	is	vulnerable	because	trust	in	third	party	arbiters	is	arbitrary	and	collusion	can	occur.	

To	 resolve	 this,	 the	MAD	 (mutually	 assured	 destruction)	model	was	 proposed	 (Yoo).	

While	 MAD	 has	 been	 presented	 previously	 in	 the	 literature	 through	 third-parties	 or	

altcoins,	we	introduce	a	simple	schema	to	achieve	MAD	on	the	bitcoin	blockchain.	

In	the	MAD	model,	Alice	wishes	to	purchase	a	product	P	of	value	v	from	Bob.	Alice	and	

Bob	then	agree	on	a	security	parameter	for	each	of	the	agents,	α	for	Alice	and	β	for	Bob,	two	

values	 in	 bitcoin.	While	 for	 the	 game	 theoretic	 proof	 it	 suffices	 to	 set	 α	 =	 β	 =	 ε	 for	 any	

positive	constant	ε,	for	simplicity	we	can	set	α	=	β	=	v.		
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The	 trade	 transaction	has	 two	 inputs:	One	 from	Alice	and	one	 from	Bob.	Alice’s	 input	

contains	v	+	α	bitcoins,	while	Bob’s	input	contains	β	bitcoins,	for	an	input	sum	of	v	+	α	+	β	

total.	 As	 both	 inputs	 have	 been	 signed	 to	 make	 the	 transaction	 valid	 and	 allow	 it	 to	 be	

published	on	the	blockchain,	this	allows	the	parties	to	atomically	commit	their	money	to	the	

transaction.	This	is	an	important	property	for	the	safety	of	the	two	parties:	If	one	of	the	two	

parties	 bails	 out,	 the	 other	 can	 leave	 and	 double-spend	 their	 money	 freely,	 as	 the	

transaction	 cannot	 be	 included	 in	 the	 blockchain.	 This	 atomicity	 is	 a	 significant	 trust	

property	 which	 is	 only	 possible	 now	 that	 blockchain	 exists	 as	 a	 primitive	 and	 was	 not	

possible	 in	alternative	earlier	cryptographic	systems.	Note	that	the	seller,	Bob,	also	has	to	

put	money	in	the	transaction	for	this	payment.	At	the	stage	before	shipping,	Alice	has	paid	

an	extra	α	amount	for	security,	while	Bob	has	paid	an	extra	β	for	security.	

	

FIGURE	26:	A	MAD	TRADE	AFTER	THE	COMMIT	STAGE	

The	transaction	contains	one	2-of-2	multisig	script	output	keyed	with	Alice’s	and	Bob’s	

public	 keys	 of	 total	 value	 v	 +	 α	 +	 β,	 as	 seen	 in	 Figure	 26:	A	MAD	 trade	 after	 the	 commit	

stage.	 As	 before,	 under	 normal	 circumstances,	 upon	 receiving	 the	 proof-of-payment	 Bob	

ships	the	product	to	Alice.	Once	Alice	receives	the	product,	the	two	parties	finalize	the	trade	

in	 the	 following	 way:	 They	 create	 a	 new	 transaction,	 the	 finalization	 transaction,	 with	 a	

single	input	of	value	v	+	α	+	β	claimed	from	the	2-of-2	multisig	script	output	of	the	previous	

transaction,	which	they	sign.	The	new	transaction	contains	two	outputs,	one	pay-to-pubkey-

hash	 of	 value	 v	 +	 β	 payable	 to	 Bob’s	 public	 key	 and	 one	 pay-to-pubkey-hash	 of	 value	 α	

payable	to	Alice’s	public	key.	Upon	finalization,	the	outputs	of	this	new	transaction	can	now	

be	 independently	 claimed	 by	 Alice	 and	 Bob,	 as	 they	 are	 now	 pay-to-pubkey-hash	

transaction	outputs,	as	seen	in	Figure	27:	A	MAD	trade	after	finalization.	In	the	end,	Bob	has	

received	 back	 his	 security	 β	 and	 Alice	 has	 received	 her	 security	 α;	 and	 Alice	 has	 also	

transefered	the	value	v	to	Bob.	
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FIGURE	27:	A	MAD	TRADE	AFTER	FINALIZATION	

	

The	MAD	 scenario	 has	 the	 desirable	 property	 that	 ε-goodness	 is	 not	 required	 by	 the	

players,	 and	 so	 the	 only	 Nash	 equilibrium	 strategy	 is	 the	 fair	 strategy.	 In	 particular,	 the	

rogue	 strategies	 described	 above	 in	 the	 2-of-2	 trade	 scenario	 are	 not	 applicable	 here.	

Specifically,	if	Alice	fails	to	finalize	the	transaction,	it	will	cost	her	a	value	α	extra,	which	no	

rational	player	would	be	willing	to	pay	(i.e.	she	would	be	paying	v	+	α	bitcoins	for	P,	which	

is	 only	 worth	 v	 bitcoins).	 On	 the	 other	 hand,	 Bob	 is	 not	 incentivized	 to	 advertise	 any	

product	P	which	he	doesn’t	intend	to	sell.	Indeed,	if	Bob	does	this,	they	will	be	penalized	by	

having	to	pay	out	β	bitcoins.	

A	game	theoretic	strategy	summary	for	the	MAD	game	is	presented	in	Table	3:	The	MAD	

trade.	The	utility	 for	each	player	 represents	 the	assets	held,	 in	money	and	product	value.	

The	players	start	with	assets	α	+	v	for	Alice	(holding	the	money)	and	β	+	v	for	Bob	(holding	

the	product).	 	The	orange	strategy	is	impossible	under	the	rules	of	the	game	(but	possible	

under	 terrorist	 negotiation	 attacks).	 The	 red	 rogue	 strategy	 of	 avoiding	 finalization	 costs	

Alice	a	value	of	α.	The	blue	rogue	strategoy	of	avoiding	shipping	costs	Bob	a	value	of	β.	The	

status	quo	strategy	is	the	green	strategy.	

	

TABLE	3:	THE	MAD	TRADE	

Buyer	\	Seller	 No	game	 Doesn’t	ship	 Ships	

No	game	 v	+	α,	v	+	β	 	 	

Doesn’t	finalize	 	 0,	v	 v	+	λ,	0	

Finalizes	 	 α,	2v	+	β	+	λ	 v	+	α	+	λ,	v	+	β	+	λ	
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However,	 “terrorist	 negotiation”	 attacks	 remain	 possible	 in	 this	 scenario.	 In	 addition,	

the	MAD	schema	is	counter-intuitive	for	most	users,	as	it	“freezes”	funds	on	the	buyer’s	side	

that	are	additional	to	the	value	of	the	product,	and	it	requires	the	seller	to	also	have	a	non-

zero	balance	in	their	account,	which	can	become	a	usability	problem,	as	it	remains	difficult	

to	educate	users	on	its	usage.	

It	 is	worthy	pointing	out	that	an	arbiter	can	easily	be	introduced	in	MAD	transactions.	

The	 scheme	 is	modified	 to	 change	 the	 output	 address	 from	 a	 2-of-2	multisig	 to	 a	 2-of-3	

multisig,	with	the	inputs	and	outputs	remaining	exactly	the	same,	and	the	arbiter	not	having	

to	pay	 for	 any	 inputs.	 The	normal	 trade	 then	 commences	without	 arbiter	 intervention	 as	

above.	 In	 case	 of	 dispute,	 however,	 the	 arbiter	 is	 given	 the	 option	 to	 resolve	 it	 at	will	 be	

reverting	 the	 whole	 transaction,	 forcing	 a	 finalization,	 or	 using	 α	 and	 β	 as	 collateral	 for	

damage.	 The	 introduction	 of	 an	 arbiter	 in	 both	 the	 simple	 2-of-2	 and	 the	 MAD	 scenario	

defends	against	human	error	of	lost	keys,	but	the	possibilty	of	collusion	and	the	question	of	

third-party	trust	arises	again.	

For	this	reason,	we	consider	the	most	desirable	trade	type	to	be	the	simple	MAD	trade	

without	arbiters.	However,	various	trade	policies	can	be	implemented	by	any	decentralized	

marketplace,	allowing	the	user	to	choose	which	trade	type	they	prefer.	

Man-in-the-middle	loss	of	anonymity	

This	 framework	 is	 susceptible	 to	 a	 man-in-the-middle	 attack	 which	 is	 unavoidable	 in	

pseudonymous	settings.	The	attack	works	as	follows:	A	malicious	agent	wishes	to	gain	trust	

as	 a	 vendor	without	 really	 being	 a	 trustworthy	 vendor.	 They	 first	 create	 an	 OpenBazaar	

vendor	 identity.	Next,	 they	choose	one	other	vendor	 that	 they	want	 to	 impersonate.	They	

subsequently	 replicate	 their	 product	 listing	 as	 their	 own.	 They	 also	 monitor	 the	 actual	

vendor's	 catalog	 for	 product	 changes,	 and	 they	 relay	 messages	 between	 buyers	 and	 the	

actual	vendor	when	buyers	message	them.	When	a	buyer	purchases	a	product	for	them,	the	

rogue	vendor	also	forwards	the	purchase	to	the	real	vendor.	Notice	that	this	problem	does	

not	directly	apply	to	mediators.	

If,	after	the	purchase,	the	buyer	and	seller	rate	each	other	positively,	this	rating	will	not	

impact	the	actual	parties,	but	will	only	be	reflected	on	the	rogue	vendor.	Hence,	the	rogue	

vendor	 will	 gain	 trust	 as	 both	 a	 seller	 and	 a	 buyer	 without	 actually	 being	 either.	 This	

process	can	be	automated.	At	a	later	time,	the	rogue	vendor	can	use	the	man-in-the-middle	

position	 to	 read	 encrypted	messages	 between	 buyers	 and	 sellers	 and	may	 sacrifice	 their	

maliciously	gained	reputation	to	cheat	on	a	desired	buyer	or	seller.	Continuous	operation	of	

such	rogue	nodes	can	undermine	the	network.	
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It	 is	difficult	 to	guard	against	 such	attacks.	The	question	of	whether	 someone	 "really"	

knows	 a	 pseudonymous	 vendor	 becomes	 philosophical;	 what	 does	 it	 mean	 to	 know	

someone	 who	 is	 pseudonymous	 to	 you?	 And	 if	 a	 man-in-the-middle	 vendor	 is	 always	

delivering	 goods,	 are	 they	 not	 also	 a	 trustworthy	 agent?	 It	 is	 recommended	 that	 users	

establish	 direct	 trust	 only	with	 pseudonymous	 vendors	whose	 real	 identity	 they	 already	

know,	or	have	signals	that	the	pseudonymous	vendor	is	not	being	man-in-the-middled.	The	

latter	 is	 difficult	 to	 establish,	 but	 may	 be	 possible	 through	 independent	 verification	 on	

different	networks	and	a	continued	trustworthy	history.	 If	we	assume	that	the	delivery	of	

products	will	not	be	intercepted	(Zetter,	2013),	the	product	delivery	itself	may	be	used	as	a	

mechanism	to	include	a	physical	copy	of	key	fingerprints	in	order	to	establish	that	no	man-

in-the-middle	is	being	present.	The	idea	of	including	the	vendor’s	identity	reference	in	the	

product	delivery	has	been	used	 in	 the	past	by	vendors	 in	rogue	marketplaces	such	as	 the	

various	versions	of	Silk	Road	and	its	later	descendants	such	as	The	Marketplace,	Evolution,	

and	so	on.	

Nevertheless,	 negative	 trust	 is	 semantically	 a	 different	 notion	 from	 positive	 trust.	

Negative	 trust	 can	 be	 attached	 to	 vendors	 whose	 identity	 is	 unknown;	 if	 a	 man-in-the-

middle	behaves	in	an	untrustworthy	manner,	it	is	imperative	to	rate	them	negatively.	This	

distinction	between	positive	and	negative	trust	is	made	clear	in	the	condition	for	w(A,	C)	>	

0	 to	 be	 positive	 in	 the	 equations	 above.	 It	 is	 a	 challenging	 problem	 to	 communicate	 this	

difference	to	the	user	via	a	clear	user	interface.	

Vendor-in-the-middle	attack	

Traditional	 multisig	 marketplaces	 involve	 a	 2-of-2	 or	 2-of-3	 multisig	 system	 to	 secure	

transactions	with	or	without	an	arbiter.	As	we	have	 illustrated,	2-of-2	and	2-of-3	multisig	

systems	in	a	closed	game	ensure	that	ε-good	rational	agents	do	not	have	incentive	to	play	

strategies	that	are	unfair	to	other	players.	

Trading	 games	 between	 OpenBazaar	 users	 are	 not	 zero-sum	 games.	 As	 multisig	

addresses	can	be	used	to	hold	funds	for	an	arbitrarily	long	time	if	not	enough	parties	sign-

off	each	transaction,	the	money	in	these	inputs	is	essentially	burned.	As	such,	participating	

players	 can	 both	 lose	money	 in	 these	 games	 (observe	 for	 example	 the	 strategy	matrix	 in	

Error!	Reference	source	not	found.).	

In	the	games	described	above,	 the	system	is	assumed	to	be	closed.	This	assumption	is	

necessary	to	ensure	the	topology	of	the	game	remains	unaltered	by	a	potentially	malicious,	

yet	 rational,	 party.	 Lacking	 the	 closed-system	 assumption	 not	 only	 makes	 these	 proofs	

difficult,	 but	 in	 fact	 makes	 them	 impossible,	 as	 the	 theorems	 no	 longer	 hold.	 This	 is	
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illustrated	 in	 the	 final	 claim	 below,	 in	 which	 a	 feasible	 attack	 against	 an	 open	 system	 is	

demonstrated.	

In	closed	systems	of	trade,	we	assume	that	there	are	two	fundamental	players,	Alice	and	

Bob,	 who	 wish	 to	 trade	 some	 product.	 If	 we	 allow	 the	 system	 to	 be	 open,	 however,	

malicious	parties	can	introduce	additional	players	as	illustrated	in	the	attack	below.	

Removing	the	assumption	of	a	closed	system	invalidates	our	proofs	above,	and,	in	fact,	

allowing	 a	malicious	 agent	 to	modify	 the	 topology	 of	 the	 trade	 by	 introducing	 additional	

agents	 breaks	 the	 system’s	 assurances	 completely.	 We	 will	 illustrate	 this	 attack	 in	 the	

following	theorem.	

Theorem:	An	open	system	of	a	2-of-3	multisig	trade	between	two	ε-good	players	Alice	

and	Bob	can	be	gamed;	that	is,	there	exist	strategies	in	which	players	playing	the	status	quo	

strategy	have	a	negative	utility.	

Proof:	We	will	prove	this	theorem	by	constructing	an	unfair	game	in	which	a	rational	

strategy	for	a	malicious	agent	is	demonstrated.	

Consider	six	ε-good	players:	Two	fair	buyers:	

• Bob	with	bitcoin	address	1B	and	physical	address	2B	

• Charlie	with	bitcoin	address	1C	and	physical	address	2B	

One	fair	seller:	

• Alice	with	bitcoin	address	1A	

Fair	arbiters:	

• Arbiter1	with	bitcoin	address	1E1	

• Arbiter2	with	bitcoin	address	1E2	

Then,	consider	a	malicious	rational	agent	Mallory	with	bitcoin	address	1M	controlling	

three	nodes	in	the	game:	

• EvilSeller1	

• EvilSeller2	

• EvilBuyer	

The	attack	proceeds	as	follows:	

Initially,	 Mallory	 creates	 the	 EvilBuyer	 node.	 Using	 the	 EvilBuyer	 node,	 Mallory	

discovers	 Alice’s	 product	 D	 and	 bitcoin	 address	 1A.	 Mallory	 subsequently	 creates	 the	

EvilSeller1	and	EvilSeller2	nodes.	He	attaches	bitcoin	address	1M	to	EvilSeller1	and	bitcoin	

address	1A	to	EvilSeller2.	He	then	creates	a	duplication	of	the	product	listing	of	D	in	each	of	

EvilSeller1	and	EvilSeller2.	This	replication	can	involve	minor	modifications	to	the	product	
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so	that	it	remains	undetectable	by	automated	or	manual	means;	for	example,	minor	changes	

in	the	title	and	description,	and	different	pictures	of	the	same	product.	

	

FIGURE	28:	THE	VENDOR-IN-THE-MIDDLE	ATTACK	

As	 Bob	 and	 Charlie	 are	 interested	 in	 the	 D	 product,	 they	 discover	 D	 as	 sold	 by	

EvilSeller1	and	EvilSeller2	respectively	and	they	place	an	order	with	an	evil	seller	each:	Bob	

places	an	order	of	D	with	EvilSeller1,	and	Charlie	places	an	order	of	D	with	EvilSeller2.	 In	

each	of	these	orders,	Arbiter1	and	Arbiter2	are	used,	and	the	following	two	2-of-3	multisig	

addresses	are	generated:	

• Multisig	address	I:	(1B,	1E1,	1M)	

• Multisig	address	II:	(1C,	1E2,	1A)	

These	multisig	addresses	correspond	to	two	Ricardian	contracts:	

• Ricardian	contract	I:	(Bob,	Arbiter1,	EvilSeller1)	with	a	shipping	address	2B.	

• Ricardian	contract	II:	(Charlie,	Arbiter2,	EvilSeller2)	with	a	shipping	address	2C.	

These	 Ricardian	 contracts	 can	 be	 signed	 without	 a	 problem	 by	 Mallory,	 as	 it	 is	 not	

necessary	 to	 be	 in	 posession	 of	 the	 private	 keys	 corresponding	 to	 1A	 to	 create	 a	 valid	

signature.	

Subsequently,	Bob	and	Charlie	fund	these	addresses	with	the	price	of	D,	as	they	expect	

the	trade	to	complete	normally.	At	this	point,	Mallory	is	aware	of	1B	and	2C,	so	he	can	use	

these	in	subsequent	information	exchanges.	
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As	soon	as	these	multisig	addresses	are	both	funded,	Mallory	sets	the	bitcoin	address	of	

EvilBuyer	to	1C	and	uses	EvilBuyer	to	place	an	order	with	Alice	using	Arbiter2	as	an	arbiter	

for	 the	contract,	but	does	not	create	a	new	multisig	address.	A	 third	Ricardian	contract	 is	

signed,	 in	which	Mallory	 decides	 the	 shipping	 address.	 In	 this	 contract,	Mallory	 critically	

choses	2B	as	the	shipping	address:	

• Ricardian	contract	III:	(EvilBuyer,	Arbiter2,	Alice)	with	a	shipping	address	2B.	

Again	this	Ricardian	contract	can	be	signed	by	Mallory	without	the	need	to	be	in	control	

of	the	shipping	address	2B	or	the	bitcoin	address	1C.	

Once	 the	 third	Ricardian	 contract	 is	 in	 place,	 EvilBuyer	demonstrates	 that	 a	 payment	

has	 been	 executed	 by	 illustrating	 to	 Alice	 that	Multisig	 address	 II	 has	 been	 funded.	 This	

concludes	 a	 valid	 proof-of-payment	 which	 is	 accepted	 by	 Alice,	 as	 it	 is	 funded	 with	 the	

correct	amount	of	money,	and	includes	the	three	expected	bitcoin	addresses	corresponding	

to	Ricardian	contract	III.	Upon	inspection	of	the	valid	proof-of-payment,	Alice	ships	D	to	2B.	

At	 some	 point,	 Bob	 receives	 his	 product	 as	 promised	 in	 Ricardian	 contract	 I	 and	

finalizes	multisig	transaction	I	by	signing	it	off.	

Upon	finalization,	Mallory	receives	the	value	of	D	without	having	shipped	any	products,	

and	departs	from	the	game.	n	

At	this	point,	Alice	will	not	have	received	any	payment	for	the	product	she	shipped,	and	

Charlie	will	have	paid	without	having	 received	a	product.	Both	of	 them	will	 file	a	dispute	

with	Arbiter1	and	Arbiter2,	but	the	dispute	remains	unresolvable.	

We	 notice	 that	 trust	 between	 players	 either	 through	 sybil	 protection	mechanisms	 or	

webs-of-trust,	 as	 described	 below,	 are	 insufficient	 to	 protect	 against	 this	 attack.	 In	

particular,	 Mallory	 is	 able	 to	 execute	 a	 trusted	 attack	 by	 gaining	 arbitrary	 trust	 for	 her	

buyer	 and	 seller	 nodes	 and	 subsequently	 executing	 a	 large-scale	 attack.	 While	 proof-of-

burn	 mechanisms	 offer	 some	 assurance	 up	 to	 a	 certain	 amount,	 the	 whole	 purpose	 of	

multisig	is	completely	defied	by	the	attack.	

As	the	arbiters	only	played	a	passive	role	in	the	attack,	clearly	this	attack	is	also	possible	

in	a	2-of-2	trade	game.	

Such	 attacks	 are	 exploitable	 in	 any	 marketplace	 where	 direct	 purchases	 between	

buyers	and	sellers	is	allowed.	

The	defence	against	such	attacks	is	pretty	straightforward:	The	shipping	address	must	

be	authorized	by	the	party	making	the	payment.	Hence,	a	signature	with	the	private	ECDSA	

key	 that	 corresponds	 to	 the	 bitcoin	 address	making	 the	 payment	must	 be	 placed	 on	 the	

Ricardian	contract	also.	This	resolves	the	problem.	
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Friendly	names	

While	we	provide	a	trust	mechanism	through	OpenBazaar	which	enables	the	estimation	of	

risk	through	a	web-of-trust	and	through	reputation	pledges,	it	is	critical	that	users	are	able	

to	use	 third-party	channels	 for	 the	discovery	of	 stores.	These	 third-party	channels	can	be	

online	 forums	and	websites,	or	direct	person-to-person	communication	 through	e-mail	or	

instant	messaging,	 in	which	 they	share	a	store	with	one	another.	 In	addition,	a	store	may	

make	 a	 name	 of	 itself	 and	 become	 memorable,	 and	 a	 user	 may	 wish	 to	 revisit	 it	 in	 the	

future.	

In	such	situations,	we	wish	to	provide	the	user	with	a	memorable	name,	in	the	form	of	a	

URL,	which	can	be	used	to	recall	the	store	later	and	share	it	easily	with	friends.	In	addition,	

store	owners	can	make	use	of	 this	name	 to	build	word-of-mouth	reputation.	 Importantly,	

users	 that	 remember	 a	 user-friendly	 URL	 can	 then	 come	 back	 to	 that	 same	 store	 later,	

without	needing	to	store	long	keys.	For	these	reasons,	it	is	imperative	that	stores	can,	with	

some	 limitations,	 choose	 the	 name	 they	 want	 to	 use,	 and	 that	 the	 names	 can	 remain	

memorable	and	short.	For	example,	names	such	as	“etsy”	and	“amazon”	should	be	usable.	

This	property	is	called	name	human-meaningfulness.	

As	 such	 names	 will	 be	 used	 to	 identify	 stores,	 it	 is	 of	 essence	 that	 the	 names	 are	

impossible	to	replicate	by	an	attacker.	Once	a	store	name	is	used	by	its	rightful	owner,	an	

attacker	should	not	be	able	to	make	use	of	the	exact	same	name.	“Rightful”	 is	defined	in	a	

first-come-first-serve	 basis;	 the	 enforcement	 of	 trademarks	 through	 centralized	 legal	

frameworks	 is	 impossible	 and	 undesirable	 in	 a	 decentralized	 setting.	 Furthermore,	 the	

owner	of	a	name	for	a	store	should	be	able	to	prove	the	ownership	of	that	store	and	be	the	

only	 one	 that	 can	 act	 as	 the	 administrator	 of	 the	 store.	 These	 abilities	 involve	modifying	

products,	 entering	 into	 agreements,	 deleting	 the	 store,	 accepting	 payments,	 and	 so	 forth.	

Furthermore,	the	owner	of	a	name	should	be	able	to	transfer	it	to	a	new	owner	at	will.	This	

property	of	being	able	to	manage	a	name	on	your	own	is	called	name	security	(Loibl,	2014).	

Finally,	 names	 must	 not	 be	 attackable	 under	 the	 OpenBazaar	 threat	 model.	 There	

should	 not	 be	 any	Achilles’	 heel,	 and	 governments	 or	 corporations	 should	 not	 be	 able	 to	

seize	names	the	 find	undesirable.	Copyrights,	 trademarks,	and	traditional	 laws	should	not	

play	a	role	in	who	owns	a	name,	as	they	can	be	manipulated	by	law-making	governments	or	

lobbying	 corporations.	 These	 actors	 should	 in	 addition	 be	 unable	 to	 perform	 denial-of-

service	 attacks	 on	 the	 name	 system.	 As	 such,	 names	 should	 be	 appointed	 in	 a	 first-come	

first-serve	basis,	with	the	first	actor	to	claim	a	name	becoming	the	owner	of	that	name.	This	

property	is	called	decentralization	.	
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GUIDs	

As	 mentioned	 previously,	 OpenBazaar	 protocol	 exchanges	 are	 digitally	 signed	 by	 ECDSA	

keys.	These	ECDSA	keys	are	different	from	bitcoin	address	keys.	They	are	used	to	collect	the	

purchases	and	sales	of	an	OpenBazaar	node	and	to	build	their	decentralized	pseudonymous	

reputation.	The	public	portion	of	these	ECDSA	keys	hashed	under	an	appropriate	algorithm	

constitutes	 the	GUID	 of	 a	 store.	 This	 GUID	 can	 be	 used	 as	 an	 identifier	 for	 the	 store	 in	 a	

secure	 and	 decentralized	 manner.	 However,	 the	 GUID	 does	 not	 have	 the	 human-

meaningfulness	property.	

We	 will	 now	 explore	 ways	 in	 which	 human-meaningfulness	 can	 be	 added	 to	

OpenBazaar	store	names.	

Zooko’s	Triangle	

Zooko	conjectured	that	“you	cannot	have	a	namespace	which	has	all	 three	of:	distributed,	

secure,	and	having	human-meaningful	keys.”	Introducing	Zooko’s	triangle,	he	claimed	that	

any	two	of	these	desirable	properties	can	be	combined,	but	not	all	three	(Wilcox-O'Hearn,	

2001).	It	is	worthy	at	this	point	to	repeat	some	definitions;	that	of	a	namespace	system,	of	

its	security,	decentralization	and	human-meaningfulness.	A	namespace	system	is	a	system	

that	 assings	 names	 to	 entities	 in	 a	 distributed	 system.	 Such	 a	 system	 can	 have	 some	

properties.	The	property	of	security	 in	a	namespace	system	indicates	that	a	given	node	in	

the	 network	 has	 to	 authenticate	 to	 claim	 a	 name;	 that	 is,	 a	 name	 cannot	 be	 claimed	

arbitrarily	once	it	has	been	assigned	to	a	node	in	the	network.	The	decentralized	property	

requires	the	system	to	have	no	central	points	of	failure	or	ownership,	i.e.	this	system	much	

enjoy	soverignty	rights.	This	incidentally	means	that	the	system	is	not	prone	to	legislative	

control	and	cannot	be	shut	down	by	traditional	means;	instead,	to	shut	down	the	network,	

all	 nodes	must	 be	 eliminated.	 Finally,	 the	 property	 of	 human-meaningfulness	means	 that	

the	names	 in	 the	 system	are	 readable	and	memorable	by	humans	and,	more	 importantly,	

useres	 can	 freely	 choose	 their	 names	 from	 a	 set	 of	 names	 (provided	 that,	 if	 the	 security	

property	 is	 also	 desired,	 a	 name	 once	 reserved	 cannot	 be	 reused	 by	 a	 different	 party	

without	authorization).	

In	 the	 next	 paragraphs,	 several	 examples	 of	 systems	which	 successfully	make	 use	 of	

some	 of	 these	 properties	 are	 presented.	 Finally,	 Namecoin,	 a	 system	 which	 successfully	

“squares	 Zookoo’s	 triangle”	 in	 a	 form	 that	 solves	 the	 conjecture	 in	 the	 negative,	 with	 a	

complete	 implementation,	 is	 presented.	 We	 make	 use	 of	 this	 system	 for	 OpenBazaar’s	

identity	system	and	explain	its	necessity.	
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FIGURE	29:	ZOOKO'S	TRIANGLE	

	

Figure	 29:	 Zooko's	 Triangle	 shows	 Zooko’s	 Triangle	 conjecture:	 The	 vertices	 indicate	

the	three	desired	properties	of	human-meaningfulness,	decentralization,	and	security.	Any	

name	system	can	lie	on	any	edge	of	the	triangle	and	have	two	vertices	adjacent	to	it,	but	not	

all	three.	We	will	now	proceed	to	illustrate	by	way	of	example	various	systems	that	go	from	

lacking	all	three	properties,	to	having	all	three	properties,	in	order	to	illustrate	the	meaning	

of	the	conjecture	and	to	show	that	it	is,	in	fact,	false	(Swartz,	2011).	

Clearly,	a	name	system	can	lack	all	 three	properties.	An	example	name	system	lacking	

all	of	these	three	properties	is	the	IP-naming	system	in	a	local	network	using	DHCP	(Droms,	

1997).	It	is	not	decentralized,	as	a	centralized	router	is	used	to	manage	the	names	and	can,	

for	example,	deny	service	or	block	specific	 IP	addresses	at	will.	 It	 is	also	not	secure,	as	 IP	

addresses	can	be	spoofed	in	the	Internet	Protocol	by	simply	constructing	a	custom	packet	

that	contains	as	source	the	IP	address	to	be	spoofed	(Tanase,	2003).	Finally,	it	is	not	human-

meaningful,	as	IP	addresses	are	a	simple	series	of	numbers	and	not	memorable.	

Several	real-world	systems	exhibit	one	of	the	three	desired	name	properties.	

The	 plain	 old	 DNS	 system	 (Mockapetris,	 1987)	 has	 one	 of	 these	 properties,	 namely	

human-meaningfulness.	 DNS	 is	 not	 decentralized,	 as	 the	 root	 nameservers	 essentially	

control	 the	 whole	 hierarchy	 of	 the	 system	 and	 can	 be	 commanded	 to	 dissolve	 names.	

Furthermore,	nodes	within	the	hierarchy	are	in	central	command	of	the	names	that	belong	

to	them,	and	there	have	been	numerous	instances	of	domain	name	seizures.	For	example,	a	

famous	 case	 with	 political	 underpinnings	 was	 the	 theft	 of	 Kim	 Dotcom’s	 Megaupload	

domain	 name	 (Sisario,	 2012)	 (Graeber,	 2012).	 In	 addition,	 DNS	 is	 not	 secure,	 as	 the	

protocol	is	not	authenticated.	Therefore,	attackers	who	are	in	control	of	the	network	layer	
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or	 the	 data	 link	 layer	 are	 able	 to	 easily	modify	 data	 by	 performing	 a	man-in-the-middle	

attack	(DNSCurve	Team,	2009).	

The	PKI	system	used	in	TLS	for	HTTPS	is	an	example	of	a	system	which	exhibits	only	the	

second	such	property,	security,	where	certificate	key	fingerprints	are	treated	as	the	names.	

Clearly,	 key	 fingerprints	 are	not	human-meaningful.	Key	 fingerprints	 are	 also	 centralized,	

with	 a	 set	 of	 root	 certificates	 being	 the	 central	 points	 of	 failure.	 In	 this	 case,	 lack	 of	

decentralization	 is	 evident	 in	 the	 fact	 that	 PKI	 is	 hierarchical.	While	 this	 centralization	 is	

generally	 undesirable,	 it	 was	 successfully	 used	 for	 good	 purpose	 in	 the	 comodohacker	

incident	 (Bright,	 2011)	 by	 browsers,	 in	 which	 a	 certificate	 was	 invalidated	 successfully	

through	 legal	 orders	 and	 agreement.	 This	 centralization	 has	 allowed	 vendors	 to	 remove	

certain	certificates	from	the	hierarchy	root	at	will	(Nightingale,	2011).	

The	property	of	decentralization	alone	can	be	 found	 in	naming	systems	such	as	mesh	

networks.	In	these	networks	MAC	addresses	are	names	which	are	truly	decentralized,	due	

to	the	fact	that	each	device	can	decide	about	its	own	address	(IEEE	Standards	Association).	

However,	the	system	is	not	secure	because	MAC	addresses	can	be	spoofed	(Pahwa,	Tiwari,	

&	Chhabra,	2010),	and	 it	 is	not	human-meaningful,	as	MAC	addresses	are	simply	series	of	

incomprehensible	numbers.		

Next,	let’s	explore	a	few	systems	that	expose	any	pair	of	Zooko’s	properties.	

Tor	 (Galperin,	2014)	contains	a	name	system	which	 is	both	decentralized	and	secure,	

yet	 it	 is	 not	 human-meaningful.	 Indeed,	 a	 tor	 hidden	 service	 (Dingledine,	 Mathewson,	 &	

Syverson,	Tor:	The	second-generation	onion	router,	2004)	name	is	secure	in	the	sense	that	

noone	can	immitate	a	name.	In	particular,	because	names	are	derived	by	hashing	the	public	

part	 of	 an	 asymmetric	 cryptographic	 key	 (Dingledine	 &	 Mathewson,	 Tor	 Protocol	

Specification,	 2015),	 and	 controlling	 a	 name	 requires	 being	 in	 control	 of	 the	 respective	

private	 key.	 As	 such,	 stealing	 a	 name	would	 require	 brute-forcing	 an	 asymmetric	 private	

key.	Furthermore,	the	system	is	decentralized	because	no	central	authority	is	in	control	of	

the	names.	Each	hidden	service	is	truly	owned	by	its	creator	and	no	legal	power	can	take	it	

away	 from	 them.	 Finally,	 names	 are	 not	 human-meaningful,	 as	 they	 are	 the	 output	 of	 a	

cryptographic	hash	function.	

mDNS,	 a	 simplified	 DNS	 system	 to	 be	 used	 by	 small	 devices	 (Cheshire	 &	 Krochmal,	

2013)	 is	 both	 decentralized	 and	 human-meaningful,	 but	 not	 secure.	 In	mDNS,	 no	 central	

authority	 decides	 on	 the	 names,	 but	 each	 device	 can	 claim	 its	 own	 name,	 hence	 it	 is	

decentralized.	 As	 the	 names	 can	 be	 choosen	 by	 the	 devices	 themselves,	 they	 are	 human-

readable.	Finally,	noone	prevents	a	device	from	choosing	the	same	name	as	another	device,	

and	hence	the	system	is	not	secure.	
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DNSSEC,	 a	 secured	 version	 of	 DNS	 (Arends,	 Austein,	 Larson,	 Massey,	 &	 Rose,	 2005)	

hopelessly	 under	 deployment	 for	 decades	 is	 a	 naming	 system	 which	 is	 both	 secure	 and	

human-meaningful,	but	not	decentralized.	DNSSEC	inherits	the	centralization	properties	of	

DNS,	 yet	 it	 also	 introduces	 security	 by	 digitally	 signing	 DNS	 records	 when	 they	 are	

exchanged.	

The	 following	 table	 summarizes	 the	 ways	 in	 which	 the	 Zookoo	 properties	 can	 be	

satisfied,	with	a	relevant	example	for	each	combination:	

TABLE	4:	ALL	COMBINATIONS	OF	ZOOKO'S	PROPERTIES	IN	NAME	SYSTEMS	

Human	 Secure	 Decentralized	 Example	

No	 No	 No	 DHCP	IP	

No	 No	 Yes	 Mesh	MAC	

No	 Yes	 No	 PKI	

Yes	 No	 No	 DNS	

No	 Yes	 Yes	 Tor	

Yes	 No	 Yes	 mDNS	

Yes	 Yes	 No	 DNSSEC	

Yes	 Yes	 Yes	 Namecoin	

Namecoin	

Namecoin	makes	 it	possible	to	have	names	that	exhibit	all	 three	of	 the	desired	properties	

(Slepak).	

Namecoin	is	a	bitcoin	fork	(Gilson,	2013).	In	fact,	it	is	the	first	fork	of	bitcoin.	By	using	a	

blockchain,	it	arrives	at	decentralized	consensus	and	hence,	similarly	to	bitcoin,	cannot	be	

brought	 down	 by	 central	 authorities	 or	 the	 law.	 Namecoin	 is	 secure.	 This	 security	 is	

achieved	 in	 a	 similar	way	 to	 Tor:	 The	 owner	 of	 each	 name	 is	 authorized	 by	 proving	 the	
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ownership	of	a	private	asymmetric	cryptographic	key.	The	public	key	that	corresponds	to	

this	 private	 key	 is	 first	 published	 to	 the	 blockchain	 when	 a	 name	 is	 first	 registered	

(“name_new”	 operation).	 Further	 updates	 to	 the	 name	 require	 proof	 of	 ownership	 of	 the	

private	 key	 whose	 respective	 public	 key	 was	 published	 during	 registration.	 Updates	 to	

names	 can	 include	 changing	 the	 value	 the	 name	 corresponds	 to	 (similar	 to	 how	 DNS	

associates	names	with	 IP	addresses),	or	 transfering	ownership	of	 the	name	 to	a	new	key.	

Finally,	 human-meaningfulness	 is	 achieved	by	 allowing	 each	user	 to	 choose	 their	 desired	

name	 freely.	 The	 names	 are	 registered	 in	 a	 first-come-first-serve	 basis	 by	 enforcing	 a	

blockchain-based	policy	similar	to	the	prevention	of	double	spending	in	bitcoin.	

OpenBazaar	and	Namecoin	Integration	

In	 OpenBazaar,	 each	 GUID	 is	 associated	 with	 a	 user-friendly	 name.	 These	 user-friendly	

names	 can	 be	 used	 as	 mnemonic	 names:	 If	 someone	 loses	 their	 trust	 network	 by	

reinstalling	 the	 node	 without	 first	 exporting,	 they	 know	 that	 certain	 agents	 remain	

trustworthy.	 Furthermore,	 user-friendly	 names	 are	 used	 in	 the	 trust	 bootstrapping	

procedure	 in	which	 it	becomes	easier	to	peer-review	that	 the	bootstrapped	nodes	are	the	

correct	 ones.	 Finally,	 user-friendly	 names	 can	 be	 exchanged	 between	 users	 out	 of	 the	

software	usage	scope;	for	example,	a	user	can	directly	recommend	a	vendor	by	their	user-

friendly	name	to	one	of	their	friends	via	e-mail.	

To	 maintain	 a	 cryptographically	 secure	 association	 between	 node	 GUIDs	 and	 user-

friendly	names,	we	utilize	 the	Namecoin	blockchain.	A	node	can	opt-in	 for	a	user-friendly	

name	if	they	so	choose.	To	create	a	user-friendly	name	for	their	GUID,	they	must	register	in	

the	"id/"	namecoin	namespace	(Namecoin	Developers,	2014)	with	their	user-friendly	name.	

For	example,	if	one	wishes	to	use	the	name	"dionyziz",	they	must	register	the	"id/dionyziz"	

name	on	Namecoin.	The	value	of	 this	 registration	 is	 a	 JSON	dictionary	 containing	 the	key	

"OpenBazaar"	 which	 has	 the	 GUID	 as	 its	 value.	 As	 Namecoin	 ids	 are	 used	 for	 multiple	

purposes,	 this	 JSON	 may	 contain	 additional	 keys	 for	 other	 services.	 The	 namecoin	

blockchain	 ensures	 unforgeable	 cryptographic	 ownership	 of	 the	 identity.	 When	 a	 node	

broadcasts	 its	 information	over	 the	OpenBazaar	network,	 they	 include	 their	user-friendly	

name	if	it	exists.	If	a	node	claims	a	user-friendly	name,	each	client	verifies	its	ownership	by	

performing	 a	 lookup	 on	 the	 namecoin	 blockchain.	 If	 the	 lookup	 succeeds,	 the	 name	 is	

displayed	on	the	OpenBazaar	GUI	and	the	information	is	relayed;	otherwise	the	information	

is	discarded.	

As	 namecoin	 names	 can	 be	 transferred,	 this	 allows	 for	 participants	 to	 transfer	 their	

identity	to	other	parties	if	they	so	desire;	for	example,	a	vendor	can	transfer	the	ownership	

of	their	store	by	selling	it.	
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As	part	of	our	work,	and	with	the	assistance	of	cryptography	students	Chara	Podimata	

and	 Kostis	 Lolos,	 we	 have	 proposed	 and	 implemented	 a	 full	 integration	 between	

OpenBazaar	and	namecoin	as	part	of	this	work.	

In	 our	 implementation,	 we	 allow	 each	 store	 to	 be	 associated	 with	 a	 name	 in	 the	

namecoin	“id/”	namespace.	These	ids	are	mutually	authenticated.	On	one	hand,	the	owner	

of	the	id/	namespace	name	must	indicate	that	they	authorize	the	use	of	their	name	for	an	

OpenBazaar	store.	This	 is	done	by	including	the	store’s	GUID	in	the	JSON	value	associated	

with	 the	namecoin	key.	On	 the	other	hand,	stores	can	 indicate	 their	namecoin	names	and	

claim	 them	when	 they	 exchange	 messages	 with	 other	 nodes	 on	 the	 network	 to	 indicate	

their	store	metadata.	As	 this	data	 is	signed	with	 the	store’s	ECDSA	private	key	associated	

with	 the	 store’s	 GUID,	 this	 indicates	 an	 authorization	 by	 the	 store	 for	 the	 name	 use.	 The	

augmented	 JSON	key	 is	 called	 ‘openbazaar’.	An	example	namecoin	entry	 for	 the	author	 is	

shown	in	Listing	4:	An	example	namecoin	"id/"	entry	containing	an	OpenBazaar	key.	

{	

				"name":	"Dionysis	Zindros",		

				"xmpp":	"dionyziz@gmail.com",		

				"namecoin":	"NBbz5d5KH8XBYbrJ7gGFmPWHzigkvRQJwR",		

				"gpg":	"45DC	00AE	FDDF	5D5C	B988		EC86	2DA4	50F3	AFB0	46C7",		

				"bitcoin":	"1vXhpZpeDWLmp7vN7k52x3WwRSZK3DT6X",		

				"openbazaar":	"6c80b332c81a880c1c0e06982d4ae94ac00e0bd5",		

				"otr":	[	

								"513BCE4D	E9E11585	F475FDFD	52462B7F	160A5753",		

								"6E25C452	B624D392	56A74B45	85D04502	EE73F5F4"	

				],		

				"bitmessage":	"BM-2cVGoqb4wxJNMjCp1ftp6hVVvx7uitaYMu",		

				"email":	"dionyziz@gmail.com"	

}	

LISTING	4:	AN	EXAMPLE	NAMECOIN	"ID/"	ENTRY	CONTAINING	AN	OPENBAZAAR	KEY	

	

Namecoin	integration	allows	users	to	remember	store	names	and	increases	the	trust	in	

the	system.	Users	can	exchange	names	with	their	friends	easily	and	payments	can	be	made	

to	 names	 instead	 of	 unreadable	 identifiers.	While	 we	 have	 not	 implemented	 this,	 a	 URL	
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schema	can	easily	be	 implemented	 so	 that	 a	 store	 can	be	visited	by	entering	 its	URL	 in	a	

user-friendly	format,	for	example	openbazaar://dionyziz.	Clicking	the	URL	can	open	up	the	

store,	 and	 visiting	 a	 store	 by	 any	 means,	 even	 if	 the	 URL	 was	 not	 clicked,	 can	 securely	

dislpay	the	user-friendly	name	to	the	user	for	validation	purposes,	similar	to	the	way	users	

are	expected	to	validate	domain-name	trust	in	the	HTTPS	security	model.	

	

def	is_valid_namecoin(namecoin,	guid):	

				if	not	namecoin	or	not	guid:	

								return	False	

				server	=	DNSChainServer.Server(constants.DNSCHAIN_SERVER_IP,	"")	

				_LOG.info("Looking	up	namecoin	id:	%s",	namecoin)	

				try:	

								data	=	server.lookup("id/"	+	namecoin)	

				except	(DNSChainServer.DataNotFound,	\	

DNSChainServer.MalformedJSON):	

								_LOG.info('Remote	namecoin	id	not	found:	%s',	namecoin)	

								return	False	

				return	data.get('openbazaar')	==	guid	

LISTING	5:	A	NAMECOIN	VALIDITY	CHECK	IMPLEMENTATION	

	

class	Server():	

				"""A	connection	to	a	DNSChain	server."""	

	

				def	__init__(self,	addr,	

																	fingerprint,	http_host_header='namecoin.dns'):	

								"""	

								Store	configuration	for	requests	to	a	DNSChain	server.	

	

								@param	addr:	The	address	of	the	trusted	DNSChain	server	
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								@param	 fingerprint:	 The	 key	 fingerprint	 of	 the	 DNSChain	

server,	for	connection	authorization	

								"""	

								self._logger_helper(__name__)	

								self.addr	=	addr	

								self.fingerprint	=	fingerprint	

								#	Per	http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html	

								self.headers	=	{'Host':	http_host_header}	

	

				def	lookup(self,	name):	

								"""	

								Looks	up	a	name	from	the	DNSChain	server.	

								@param	name:	The	name	to	lookup,	e.g.	'id/dionyziz'	

								"""	

								full_url	=	"http://%s/%s"	%	(self.addr,	name)	

								request	=	urllib2.Request(full_url,	None,	self.headers)	

								try:	

												response	=	urllib2.urlopen(request)	

								except	urllib2.HTTPError,	e:	

												if	e.code	==	404:	

																raise	DataNotFound(e,	name,	self.headers['Host'])	

								namecoin_string	=	response.read()	

								try:	

												data	=	json.loads(namecoin_string)	

								except	ValueError:	

												raise	MalformedJSON("%s\n%s"	\	

												%	(ValueError,	namecoin_string))	

								return	data	

LISTING	6:	PARTS	OF	THE	PYDNSCHAIN	IMPLEMENTATION	
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A	basic	implementation	of	a	namecoin	validity	check	is	shown	in	Listing	5:	A	Namecoin	

Validity	 Check	 Implementation.	 As	 part	 of	 this	 work,	 we	 have	 also	 developed	 a	 Python	

library	 for	 looking	 up	 namecoin	 names	 from	 centralized	 servers.	 The	 idea	 is	 that	 the	

OpenBazaar	 user	 can	 choose	 to	 use	 a	 namecoin	 server,	 or	 operate	 their	 own,	 while	 the	

OpenBazaar	 client	 simply	 issues	 HTTP-based	 queries	 to	 it.	 Parts	 of	 our	 pydnschain	

implementation	are	shown	in	Listing	6:	Parts	of	the	PYDNSChain	Implementation.	
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Further	research	

In	 the	 following	 paragraphs,	 we	 briefly	 touch	 on	 topics	 that	 can	 be	 of	 interest	 to	 other	

researchers	 in	 the	 field.	We	explore	some	 initial	 ideas	 in	 these	areas,	but	 it	 remains	clear	

that	 the	 details	 are	 left	 incomplete	 and	 additional	 work	 is	 required	 to	 explore	 these	

possibilities.	

Trusted roles 

It	 may	 be	 meaningful	 to	 distinguish	 trustworthiness	 of	 a	 pseudonymous	 individual	 in	

different	 roles;	 for	 example,	 a	 person	 who	 is	 a	 trustworthy	 merchant	 may	 not	 be	 a	

trustworthy	 judge.	 Hence,	 trust	 to	 buy	 from	 a	 person	 may	 be	 different	 from	 trust	 to	

mediate.	 In	 our	 web	 of	 trust,	 we	 have	 assumed	 that	 this	 trust	 is	 the	 same	 under	 our	

projection	mechanism.	A	 fruitful	 research	direction	 seems	 to	 be	 the	 ability	 to	 distinguish	

between	 roles	 and	 provide	 a	 generic	 framework	 for	 establishing	 trust	 in	 a	 decentralized	

setting.	 This	 could	 be	 the	 cornerstone	 of	 a	 decentralized	 electronic	 state,	 in	 which	

individuals	provide	attestments	that	their	peers	hold	degrees	or	are	trustworthy	drivers.	

GPG	 also	 distinguishes	 between	 trusting	 the	 identity	 binding	 between	 a	 real-world	

individual	 and	 a	 key	 and	 the	 trust	 directly	 given	 to	 an	 individual	 as	 far	 as	 they	 are	

concerned	 about	 signing	 other	 keys.	 In	 a	 similar	 setting	 as	 blurring	 the	 trust	 between	

different	roles,	 the	OpenBazaar	 for	better	or	 for	worse	considers	 these	 to	be	 the	same.	 In	

the	OpenBazaar	web-of-trust,	 trust	 is	an	 intuitive	concept	and	there	need	to	be	no	 formal	

rules	followed	when	trust	is	given	to	others.	The	every-day	statement	"I	trust	this	person"	

corresponds	to	actually	giving	trust	to	an	individual.	This	is	in	contrast	to	the	GPG	web-of-

trust	in	which	signing	keys	requires	a	certain	procedure	of	identity	verification	with	which	

individuals	may	not	 be	 familiar	with,	 and	hence	 this	 differentiation	 is	 in	 order.	However,	

this	 interpretation	 may	 be	 unsubstantiated	 and	 more	 research	 is	 needed	 to	 study	 the	

usability	and	intuitiveness	of	this	scheme	from	a	human-machine	interaction	point	of	view.	

Distinguishing	 the	 role	 of	 an	 assurer	 may	 also	 become	 a	 necessity	 in	 a	 universal	 trust	

network;	 as	 well,	 the	 roles	 for	 which	 an	 assurer	 can	 assure	 may	 be	 limited.	 This	 may	

require	a	set	of	tags	for	which	people	are	assured,	one	of	which	may	be	the	ability	to	assure.	

Furthermore,	 we	 do	 not	 distinguish	 between	 uncertainty	 of	 trust	 and	 certainty	 in	

neutral	trust	as	other	authors	(Jøsang,	1999).	It	may	be	helpful	to	employ	such	distinction	

in	future	versions	of	our	web-of-trust.	

Feedback	and	reviews	

Feedback	 can	 be	 given	 by	 buyers	 to	 vendors,	 by	 vendors	 to	 buyers,	 and	 by	 buyers	 and	

vendors	 to	 mediators	 in	 text	 form.	 Feedback	 is	 a	 piece	 of	 text	 from	 a	 particular	 source	
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pertaining	 to	 a	 particular	 target.	 Keeping	 the	 above	 man-in-the-middle	 vendor	 attack	 in	

mind,	it	may	in	cases	not	make	sense	to	rate	vendors	or	buyers	directly	if	their	real	identity	

is	unknown	by	the	rater,	even	if	they	trade	fairly,	unless	they	can	establish	an	existing	trust	

relationship	towards	them	in	order	to	at	least	determine	their	legitimacy.	

To	avoid	fake	feedback,	feedback	must	only	be	relayed	by	the	OpenBazaar	client	if	it	is	

from	 a	 node	 that	 has	 transacted	 with	 the	 target.	 Therefore,	 feedback	 must	 be	 digitally	

signed	 and	 include	 a	 reference	 to	 the	 transaction	 that	 took	 place	 –	 the	 hash	 of	 the	 final	

Ricardian	contract	in	question,	as	well	as	the	bitcoin	transaction	where	it	was	realized.	

However,	 given	 that	 transactions	 are	 free	 to	 execute,	 to	 avoid	 Sybil	 attacks	 from	

vendors	or	buyers	who	transact	with	themselves,	feedback	must	only	be	trusted	when	it	is	

given	 from	 parties	 that	 are	 already	 trusted	 using	 the	 total	 trust	 metric	 defined	 below.	

Otherwise,	it	must	not	be	displayed	or	relayed.	

Association	with	other	identity	systems	

It	 is	 worthy	 to	 attempt	 an	 association	 of	 the	 web-of-trust	 network	 with	 other	 identity	

management	 systems.	However,	 given	 the	highlighted	differences	 in	 the	previous	 section,	

such	an	association	would	compromise	some	of	the	security	assumptions	of	the	model.	It	is	

therefore	mandatory	that	interconnection	with	other	networks	is	an	opt-in	option	for	users	

who	wish	to	forfeit	some	of	our	security	goals.	

An	interconnection	with	the	GPG	web-of-trust	may	be	achieved	by	allowing	OpenBazaar	

nodes	to	be	associated	with	GPG	keys.	A	particular	OpenBazaar	node	can	have	a	one-to-one	

association	 with	 a	 GPG	 identity	 through	 the	 following	 technical	 mechanism:	 The	 GPG	

identity	can	provide	additive	trust	to	the	existing	trust	of	the	system.	To	indicate	that	a	GPG	

key	 is	 associated	 with	 an	 OpenBazaar	 identity	 and	 that	 the	 GPG	 key	 owner	 wishes	 to	

transfer	the	GPG	trust	to	an	OpenBazaar	node,	the	GPG	key	owner	cryptographically	signs	a	

binding	contract	which	contains	the	OpenBazaar	GUID	of	the	target	node,	and	potentially	a	

time	 frame	 for	which	 the	 signature	 is	 valid.	 The	 GPG-signed	 contract	 can	 then	 be	 signed	

with	 the	 OpenBazaar	 cryptographic	 key	 to	 indicate	 that	 the	 OpenBazaar	 node	 operator	

authorizes	 GPG	 trust	 to	 be	 used	 for	 their	 node.	 The	 double	 signed	 contract	 can	 then	 be	

included	in	the	metadata	associated	with	the	OpenBazaar	node	and	distributed	through	the	

OpenBazaar	 distributed	 hash	 table.	 Each	 client	 can	 inter-process	 communicate	 with	 the	

GPG	software	instance	installed	on	the	same	platform	to	obtain	access	to	existing	keys	and	

signatures.	

Nevertheless,	it	is	advised	not	to	include	such	an	implementation	in	the	canonical	client,	

as	 traditional	 GPG	webs-of-trust	 are	 identity-verifying,	 not	 trust-verifying,	 as	 explored	 in	

the	 section	 above.	 Furthermore,	 the	 GPG	 web-of-trust	 does	 not	 offer	 any	 assurances	 on	
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pseudonymity.	While	it	is	possible	to	exchange	GPG	signatures	anonymously,	the	GPG	web-

of-trust	 is	 typically	 based	 on	 global	 topological	 knowledge	 of	 the	 GPG	 graph	 and	 is	

distributed	through	public	keyservers.	If	a	user	opts-in	to	interconnect	with	the	GPG	web-

of-trust,	they	are	forfeiting	these	benefits	of	the	OpenBazaar	network.	

An	 interconnection	 with	 the	 Bitcoin	 OTC	 web-of-trust	 is	 also	 possible.	 Existing	 trust	

relationships	 can	 be	 imported	 to	 the	 OpenBazaar	 client	 manually	 through	 a	 file,	 or	

automatically	downloaded	from	the	Bitcoin	OTC	IRC	bot	dynamically	upon	request,	as	the	

Bitcoin	OTC	website	 is	 an	 insecure	distribution	channel	 and	does	not	offer	HTTPS.	 In	 the	

dynamic	downloading	case,	the	threat	model	is	reduced	to	trusting	the	TLS	IRC	PKI,	which	

is	known	to	be	attackable	by	powerful	third	parties	(Adkins,	2011).	

This	web-of-trust	has	the	benefit	of	being	a	true-trust	web-of-trust,	and	has	a	history	of	

support	by	the	Bitcoin	community.	A	double	signature	is	again	required	to	interconnect	two	

identities.	 The	 GPG	 key	 associated	 with	 the	 Bitcoin	 OTC	 network	 is	 used	 to	

cryptographically	sign	a	binding	contract	similar	to	the	one	described	above,	and	the	rest	of	

the	procedure	is	identical	to	GPG	identity	binding.	

In	 this	 case,	 an	Achilles'	 heel	 is	 introduced	 to	 the	 software,	 as	 the	user	 is	 required	 to	

trust	 the	 Bitcoin	OTC	web-of-trust	 operator	 and	 the	 distribution	 operator,	 both	 of	which	

identities	 can	 possibly	 be	 compromised	 by	 a	 malicious	 third	 party;	 the	 system	 is	

centralized.	The	situation	can	be	improved	if	the	Bitcoin	OTC	operator	begins	GPG	signing	

the	trust	network,	or	by	requiring	the	Bitcoin	OTC	trust	edges	to	include	GPG	signatures	by	

the	 users	 involved.	 However,	 the	 topology	 of	 the	 network	 is	 again	 public,	 forfeiting	

pseudonymity	 requirements.	 Therefore,	 an	 implementation	 is	 again	 not	 advised	 for	 the	

canonical	OpenBazaar	client	at	this	time.	

If	the	user	is	not	concerned	with	single-points-of-failure	and	centralization,	the	web-of-

trust	 can	be	 temporarily	bootstrapped	by	binding	 identities	 to	 existing	 social	networking	

services	which	include	edges	between	identities	as	"friendships"	or	"follows".	For	example,	

the	Twitter	and	Facebook	networks	can	be	used.	Such	bindings	can	be	weighted	with	a	low	

score	 in	 addition	 to	 existing	 scores	 as	 described	 in	 the	 Total	 Trust	 section	 below.	 The	

author	strongly	advises	against	such	interconnections.	The	threat	model	of	the	OpenBazaar	

network	 is	 completely	 forfeited	 if	 such	 trust	 relationships	 are	 used.	 Centralized,	 non-

anonymous	 services	 for	 trade	 such	 as	 eBay	 are	 widespread	 and	 can	 be	 used	 in	

OpenBazaar's	stead	if	these	assurances	are	of	no	concern	to	the	user.	

Further	 research	 is	 required	 to	 determine	how	 such	 interconnections	will	 impact	 the	

security	of	the	network.	
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Turing	complete	blockchains	

Turing-complete	blockchains	allow	particularily	interesting	explorations.	Further	research	

is	 required	 to	 determine	 whether	 they	 are	 feasible.	 One	 could	 use	 a	 turing-complete	

blockchain	 to	 enable	more	 advanced	 rating	 systems	 and	 trust.	 These	 could	 be	 crafted	 so	

that	 they	 are	 game-theoretically	 sound	 and	 provide	 better	 assurances	 than	 our	 trust	

system.	Timelock	mechanisms	can	also	be	explored	in	these	schemes.	

Trust-as-risk	

Trust	 in	 this	work	was	not	quantified	using	a	 formal	mathematical	definition.	We	believe	

this	is	possible	by	assigning	monetary	values	to	the	web-of-trust	edges.	This	idea	was	first	

put	 forth	 by	 Washington	 Sanchez	 of	 the	 OpenBazaar	 team.	 These	 monetary	 values	 can	

indicate	 quantitatively	 how	much	money	 exactly	 each	 party	 is	 willing	 to	 risk	 to	 support	

their	trust	towards	another	party.	While	we	don’t	 fully	understand	it,	we	hope	this	model	

will	allow	more	precise	game-theoretic	and	probabilistic	proofs	to	take	place,	giving	much	

needed	confidence	to	these	financial	cryptographic	webs-of-trust.	We	are	excited	about	this	

research	direction	and	encourage	researchers	to	explore	this	alterantive	option	of	modeling	

trust.	

Trust	propagation	and	storage	

The	exact	 technical	details	on	trust	and	reputation	storage	have	not	been	explored	 in	this	

work.	One	option	would	be	to	use	a	DHT	with	infohashes	and	a	torrent-like	mechanism	for	

distribution.	Blockstack’s	blockstore	(Ali,	2015)	provides	 interesting	primitives	 that	could	

be	leveraged.	

Circular	trust	propagation	and	convergence	

The	simple	transitivity	scheme	which	we	use	on	the	web-of-trust	is	flawed	and	it	must	be	

reworked	before	implementation.	Currently,	trust	is	impossible	to	calculate	if	cycles	exist	in	

the	network	graph.	As	the	topology	is	only	partially	known,	it	is	not	trivial	to	detect	cycles.	

Furthermore,	 basic	 cycle	 detection	 mechanisms	 used	 in	 routing	 protocols	 may	 easily	

compromise	the	anonymity	of	the	network	by	revealing	non-local	topological	information.	

The	 formulae	 to	 deduce	 trust	 must	 be	 reworked	 to	 take	 this	 important	 issue	 into	

consideration.	It	may	be	possible	to	avoid	cycle	detection	and	employ	a	mechanism	which	

converges	 to	 the	 actual	 trust	with	 good	probability	 if	 some	 randomness	 factor	 is	 used	 to	

decide	responding	to	queries	whose	answer	is	not	known.	
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Cycles	could	be	detected,	for	example,	by	carrying	unique	salted	node	hashes	as	a	path	

is	constructed,	which	allow	nodes	to	check	for	themselves	within	a	cycle	path.	More	work	is	

needed	to	establish	such	schemes.	
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Ethical	considerations	

The	 ethical	 considerations	 behind	 building	 OpenBazaar	 are	 important,	 even	 more	

significant	than	usual	decentralized	systems.	

A	 marketplace	 like	 OpenBazaar	 replaces	 traditional	 online	 marketplaces	 in	 a	 very	

powerful	 and	 useful	 way	 that	 enables	 vendors	 and	 buyers	 to	 truly	 own	 their	 puchases,	

without	 censorship.	 It	 creates	an	environment	where	 trade	 is	 truly	 free;	 this	 is	a	broader	

freedom	 than	 freedom	 of	 speech	 which	 is	 usually	 employed	 by	 decentralized	 systems.	

While	 OpenBazaar	 is	 simply	 a	 carrier	 of	 information,	 it	 is	 also	 an	 enabler	 of	 real-world	

activity.	As	such,	it	can	be	used	for	good	and	for	evil.	

OpenBazaar	allows	for	many	illegal	activities	to	take	place,	and,	if	used	correctly,	makes	

it	impossible	for	law	enforcement	to	intervene.	As	law	enforcement	often	interrupts	illegal	

activity	at	points-of-sale,	OpenBazaar	makes	it	harder	for	them	to	operate,	because	points-

of-sale	 are	 neither	 centrally	 controlled	 nor	 physical.	 Physical	 sting	 operations	 that	 police	

have	traditionally	used	at	point-of-sale	locations	to	catch	criminals	now	become	impossible,	

especially	 because	 of	 the	 anonymity	 properties	 of	 OpenBazaar.	 Furthermore,	 the	

decentralized	 nature	 of	 the	 system	 makes	 censoring	 illegal	 products	 impossible.	 Each	

OpenBazaar	store	must	be	dealt	with	and	closed	down	 independently,	 through	a	physical	

interception	 of	 goods	 delivered.	 At	 the	 same	 time,	 as	 physical	 product	 delivery	 becomes	

more	anonymous,	for	example	through	drone	network	or	by	hiding	between	the	enormous	

volume	of	business	letters,	these	operations	will	become	harder	and	harder.	When	it	comes	

to	goods	digitally	delivered,	interception	during	product	dispatching	becomes	impossible.	

The	 potential	 malicious	 uses	 of	 OpenBazaar	 are	 staggering.	 The	 simplest	 illegal	

activities	 that	 can	 be	 condoned	 are	 marginally	 illegal.	 Embargoes	 can	 be	 circumvented,	

porn	production	can	be	enabled	in	countries	where	it	is	illegal,	tax	can	be	evaded	(Torpey,	

2014).	But	 the	 illegal	uses	of	a	 truly	decentralized	anonymous	marketplace	range	beyond	

these	 simple	 activities.	 Even	 the	 most	 harmful	 drugs	 can	 be	 freely	 sold	 (Kumar,	 2015)	

without	any	accountability.	Extreme	and	harmful	pornography,	such	as	child	pornography	

(Bravura,	 2014),	 can	 be	 freely	 traded	 for	money.	 Gun	 parts	 and	 weapons	 can	 be	 traded	

(Shubber,	2014),	including	materials	for	mass-destruction	weapons,	among	others	nuclear,	

chemical	and	biological	weapons.	Finally,	people	can	be	traded	as	slaves.	

As	researchers	and	engineers	building	these	new	technologies,	we	must	be	constantly	

aware	 of	 the	 ethical	 implications	 of	 our	 work.	 We	 bear	 the	 responsibility	 to	 create	

technologies	for	good.	While	we	understand	that	the	decentralized	marketplace	can	be	used	

for	evil,	we	treat	it	as	an	underlying	transport	technology.	Similar	to	the	Internet,	which	can	

host	good	and	bad	content,	a	marketplace	can	also	be	used	for	any	content	the	users	deem	

appropriate.	We	employ	optional	mechanisms	to	filter	inappropriate	content	from	the	eyes	
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of	users	who	wish	to	stay	legal;	this	is	the	best	we	can	do	in	an	open	source	decentralized	

setting.	

We	strongly	believe	such	liberated	marketplaces	will	be	overwhelmingly	used	for	good	

purpose	and	only	a	minority	will	use	it	for	bad	purposes.	While	the	bad	actors	can	never	be	

completely	 avoided,	 we	 feel	 we	 are	 building	 an	 important	 infrastructure	 for	 future	

generations.	Roads	and	bridges	can	be	used	by	both	criminals	and	honest	workers	as	means	

of	 transportation;	 this	 argument	 has	 never	 hindered	 the	 progress	 of	 science	 and	

engineering.	As	 such,	we	 consciously	decided	 to	move	 forward	with	 this	 implementation,	

albeit	aware	of	its	potential	bad	uses.	We	urge	future	researchers	in	the	area	to	be	mindful	

of	the	ethical	implications	of	their	work.	
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Conclusion	

We	 have	 built	 an	 anonymous	 decentralized	 marketplace	 based	 on	 bitcoin,	 OpenBazaar,	

which	we	developed	using	secure	practices	and	a	clear	threat	model.	

We	 presented	 the	 security	 of	 OpenBazaar	 by	 first	 introducing	 the	 required	

cryptographic	 primitives	 and	 by	 putting	 it	 within	 the	 historical	 economic	 context.	 We	

presented	the	essential	theory	behind	bitcoin,	which	is	a	cornerstone	of	the	network.	

We	 introduced	a	new	mechanism	 to	allow	 for	 fully	pseudonymous	webs-of-trust.	The	

web-of-trust	is	developed	in	a	way	that	allows	conveying	true	trust	and	not	simple	identity	

verification.	 Furthermore,	 anonymity	 is	 preserved	 through	 only	 partial	 topological	

disclosure.	The	notion	of	graph	distance	 is	maintained	 through	an	attenuation	 factor.	The	

web-of-trust	is	designed	to	be	used	in	a	commercial	setting,	where	trust	is	an	indispensable	

tool	for	trade.	Trust	propagates	using	multiplicative	properties.	

The	web-of-trust	 is	bootstrapped	through	trust	 to	a	seed	set	of	nodes,	which	requires	

the	user	to	explicitly	opt-in	if	they	wish	to	trade	illicitly.	

Introduction	 to	 the	 trust	 system	 is	 obtained	 through	 global	 trust,	 which	 is	 weighted	

along	with	projected	trust.	Global	trust	is	achieved	through	a	proof-of-burn	mechanism,	and	

an	alternative	proof-of-timelock	mechanism	is	explored.	Together,	these	mechanisms	allow	

a	 calculation	 of	 total	 trust	 between	 nodes.	We	 presented	 specific	 formulae	which	 can	 be	

used	to	achieve	numeric	results.	Global	trust	 is	accompanied	by	friendly	names	which	are	

achieved	 through	 an	 integration	with	 namecoin,	 which	 plays	 an	 important	 role	 in	 users’	

trust.	

In	response	to	our	proposals,	we	illustrated	security	concerns	on	mechanisms	that	are	

not	appropriate	for	such	an	implementation,	such	as	proof-of-donation	and	proof-to-miner,	

and	we	developed	an	attack	on	the	web-of-trust	through	graph	separator	control.	

In	addition	to	the	trust	notions	we	developed,	we	presented	self-enforcing	contracts	to	

avoid	 the	 need	 for	 trust	 altogether.	 We	 explored	 ricardian	 contracts	 and	 we	 used	 game	

theory	to	analyze	2-of-2,	2-of-3,	and	MAD	trades.	Finally,	we	explored	attacks	against	such	

contracts	such	as	the	man-in-the-middle	anonymity	attack,	the	terrorist	negotiation	attack,	

and	the	vendor-in-the-middle	attack.	

Overall,	this	anonymous	marketplace	system	can	be	used	in	a	wide	commercial	setting	

securely	 and	 offers	 strong	 assurances	 of	 trust	 in	 which	 large	 financial	 trades	 can	 be	

performed	safely.	



109	

Bibliography	

Addley,	E.,	&	Halliday,	 J.	 (2010,	12	08).	Operation	Payback	cripples	MasterCard	site	 in	

revenge	for	WikiLeaks	ban.	The	Guardian	.	

Adkins,	H.	(2011,	08	29).	An	update	on	attempted	man-in-the-middle	attacks.	Retrieved	

11	 30,	 2015,	 from	 Google	 Online	 Security	 Blog:	

https://googleonlinesecurity.blogspot.gr/2011/08/update-on-attempted-man-in-

middle.html	

Ali,	 M.	 (2015,	 04	 21).	 Data	 Storage.	 Retrieved	 11	 30,	 2015,	 from	 Blockstore	

Documentation:	https://github.com/blockstack/blockstore/wiki/Data-Storage	

Allison,	 I.	 (2015,	 11	 20).	 Move	 over	 eBay:	 Countdown	 to	 OpenBazaar	 and	 the	

decentralised	marketplace	revolution.	International	Business	Times	.	

Andresen,	G.	(2012,	01	03).	Pay	to	Script	Hash.	Retrieved	from	BIP.	

Antonopoulos,	A.	M.	(2014).	Mastering	Bitcoin.	O'Reilly	Media.	

Arends,	 R.,	 Austein,	 R.,	 Larson,	 M.,	 Massey,	 D.,	 &	 Rose,	 S.	 (2005,	 03).	 DNS	 Security	

Introduction	 and	 Requirements.	 Retrieved	 11	 30,	 2015,	 from	 IETF:	

https://www.ietf.org/rfc/rfc4033.txt	

Arinich,	G.	(2013,	10	11).	Decentralized	Anonymous	Marketplace:	The	Concept.	Retrieved	

11	 14,	 2015,	 from	 GitHub:	 https://github.com/goshakkk/decentralized-anonymous-

marketplace-concept	

Back,	A.	(2002,	08	01).	Hashcash	-	A	Denial	of	Service	Counter-Measure.	

Barratt.	(2012).	Silk	Road:	eBay	for	drugs.	Addiction	,	107	(3),	683.	

Biggs,	J.	(2013,	12	05).	Who	Is	The	Real	Satoshi	Nakamoto?	One	Researcher	May	Have	

Found	The	Answer	.	TechCrunch	.	

Biham,	E.,	&	Chen,	R.	(2004).	Near-Collisions	of	SHA-0.	CRYPTO	.	

Bitcoin	 Developers.	 (n.d.).	 Bitcoin	 Developer	 Guide.	 Retrieved	 11	 16,	 2015,	 from	

bitcoin.org:	https://bitcoin.org/en/developer-guide	

Bitcoin	 Developers.	 (n.d.).	 Protocol	 documentation.	 Retrieved	 from	 Bitcoin	 wiki:	

https://en.bitcoin.it/wiki/Protocol_documentation#tx	

Bitcoin	 Developers.	 (n.d.).	 Script.	 Retrieved	 11	 28,	 2015,	 from	 Bitcoin	 wiki:	

https://en.bitcoin.it/wiki/Script#Anyone-Can-Spend_Outputs	

Bitcoin	Foundation.	(2013,	10	24).	Core	Development	Update	#5.	Retrieved	11	28,	2015,	

from	Bitcoin	Foundation:	https://bitcoinfoundation.org/core-development-update-5/	



110	

Bos,	J.,	Kaihara,	M.,	Kleinjung,	T.,	Lenstra,	A.,	&	Montgomery,	P.	(2009).	On	the	Security	

of	1024-bit	RSA	and	160-bit	Elliptic	Curve	Cryptography.	IACR	Cryptology	.	

Brabec,	B.	(1998).	Handmade	For	Profit.	USA:	M.	Evans.	

Bravura,	M.	(2014,	07	22).	OpenBazaar:	Blazing	the	trail	for	bitcoin	commerce	without	

barriers.	Cryptocoin	News	.	

Bright,	P.	 (2011,	09	07).	Comodo	hacker:	 I	hacked	DigiNotar	 too;	other	CAs	breached.	

arstechnica	.	

Buterin,	 V.	 (2014).	 A	 next-generation	 smart	 contract	 and	 decentralized	 application	

platform.	

Cheshire,	 S.,	 &	 Krochmal,	 M.	 (2013,	 02).	Multicast	 DNS.	 Retrieved	 11	 30,	 2015,	 from	

IETF:	https://tools.ietf.org/html/rfc6762	

Chulov,	 M.	 (2012,	 11	 29).	 Syria	 shuts	 off	 internet	 access	 across	 the	 country.	 The	

Guardian	.	

Clarke,	 I.,	 Sandberg,	 O.,	 Wiley,	 B.,	 &	 Hong,	 T.	 W.	 (2001).	 Freenet:	 A	 Distributed	

Anonymous	 Information	Storage	and	Retrieval	 System.	 In	H.	Federrath,	Designing	Privacy	

Enhancing	Technologies	(pp.	46-66).	Berkeley,	USA:	Springer-Verlag	Berlin	Heidelberg.	

Clinch,	M.	(2014,	03	07).	'Real'	bitcoin	creator:	'I	am	not	Dorian	Nakamoto'	.	CNBC	.	

Corbin,	 K.	 (2014,	 01	 21).	 Litigation	 Over	 PayPal	 Holds	 Languishes	 in	 Court	 .	

eCOMMERCEBYTES	.	

CounterParty.	 (2014,	 03	 23).	 Why	 Proof-of-Burn.	 Retrieved	 11	 25,	 2015,	 from	

counterparty.io:	http://counterparty.io/why-proof-of-burn/	

Dai,	 W.	 (1998,	 11).	 b-money.	 Retrieved	 11	 14,	 2015,	 from	 Wei	 Dai:	

http://www.weidai.com/bmoney.txt	

Davis,	J.	(2011,	10	10).	The	Crypto-Currency.	The	New	Yorker	.	

Dingledine,	R.,	&	Mathewson,	N.	(2015,	08	12).	Tor	Protocol	Specification.	Retrieved	11	

30,	2015,	from	https://github.com/torproject/torspec/blob/master/tor-spec.txt	

Dingledine,	R.,	Mathewson,	N.,	&	Syverson,	P.	(2004).	Tor:	The	second-generation	onion	

router.	Naval	Research	Lab	.	

DNSCurve	Team.	 (2009,	 06	 24).	Usable	 security	 for	DNS.	 Retrieved	 11	 30,	 2015,	 from	

DNSCurve:	http://dnscurve.org/forgery.html	

Dolgov,	A.	(2015,	05	15).	Paypal	Blocks	Russian	Account	Linked	to	Nemtsov	Report	on	

Ukraine.	The	Moscow	Times	.	



111	

Douceur.	(2002,	03).	The	Sybil	Attack.	Proceedings	of	the	IPTPS	’02	Workshop	.	

Driessen,	V.	(2010,	01	05).	A	successful	Git	branching	model.	Retrieved	11	19,	2015,	from	

Thoughts	 and	 writings	 by	 Vincent	 Driessen:	 http://nvie.com/posts/a-successful-git-

branching-model/	

Droms,	R.	(1997,	03).	Dynamic	Host	Configuration	Protocol.	Retrieved	11	30,	2015,	from	

IETF:	https://tools.ietf.org/html/rfc2131	

European	Union.	(2008).	On	the	statute	of	the	European	system	of	central	banks	and	of	

the	European	Central	Bank.	Official	Journal	of	the	European	Union,	(p.	8).	

Evans,	Z.	(2014,	10	02).	Agora	Is	the	Web's	Top	Black	Marketplace.	reason	.	

Eyal,	 I.,	 &	 Sirer,	 E.	 G.	 (2014).	 Majority	 Is	 Not	 Enough:	 Bitcoin	 Mining	 Is	 Vulnerable.	

Financial	Crypto	,	436-454.	

Folkinshteyn,	 D.	 (n.d.).	 OTC	 web-of-trust.	 Retrieved	 11	 25,	 2015,	 from	 #bitcoin-otc:	

https://bitcoin-otc.com/trust.php	

Freedom	House.	(2015,	05	14).	PayPal	Blocks	Donations	for	Report	on	Russian	Actions	

in	Ukraine	.	Freedom	House	.	

Freenet	 Web	 Of	 Trust.	 (n.d.).	 Retrieved	 11	 2015,	 14,	 from	 Freenet	 Project:	

https://wiki.freenetproject.org/WoT	

Frisby,	D.	(2014).	Bitcoin:	The	Future	of	Money?	Unbound.	

Galperin,	 E.	 (2014,	 07	 03).	Dear	NSA,	 Privacy	 is	 a	 Fundamental	 Right,	 Not	 Reasonable	

Suspicion.	 Retrieved	 11	 30,	 2015,	 from	 Electronic	 Frontier	 Foundation:	

https://www.eff.org/deeplinks/2014/07/dear-nsa-privacy-fundamental-right-not-

reasonable-suspicion	

Garay,	 J.,	Kiayias,	A.,	&	Leonardos,	N.	 (2015).	The	Bitcoin	Backbone	Protocol:	Analysis	

and	Applications.	EUROCRYPT	,	281-310.	

Gilson,	D.	(2013,	01	06).	What	are	Namecoins	and	.bit	domains?	CoinDesk	.	

Graeber,	C.	(2012,	10	18).	Megaupload	Is	Dead.	Long	Live	Mega!	WIRED	.	

Greenberg,	 A.	 (2014,	 03	 06).	 Bitcoin	 Community	 Responds	 To	 Satoshi	 Nakamoto's	

'Uncovering'	With	Disbelief,	Anger,	Fascination.	Forbes	.	

Greenberg,	A.	(2014,	08	28).	Creators	of	New	Fed-Proof	Bitcoin	Marketplace	Swear	It’s	

Not	for	Drugs.	WIRED	.	

Greenberg,	A.	(2014,	04	25).	Inside	DarkMarket:	a	Silk	Road	the	FBI	can't	touch.	WIRED	.	



112	

Greenberg,	A.	(2014,	04	24).	Inside	the	DarkMarket	Prototype,	a	Silk	Road	the	FBI	Can	

Never	Seize.	WIRED	.	

Greenberg,	A.	 (2013,	11	06).	 'Silk	Road	2.0'	Launches,	Promising	A	Resurrected	Black	

Market	For	The	Dark	Web.	Forbes	.	

Grigg,	 I.	 (2004).	 The	 Ricardian	 Contract.	 IEEE	 International	 Workshop	 on	 Electronic	

Contracting	,	25-31.	

Grinberg,	R.	(2011).	Bitcoin:	an	innovative	alternative	digital	currency.	Hastings	Science	

&	Technology	Law	Journal	,	4,	160.	

Hearn,	 M.	 (2013,	 02	 02).	 Creating	 Bitcoin	 passports	 using	 sacrifices.	 Retrieved	 11	 28,	

2015,	 from	 Bitcoin	 talk:	

https://bitcointalk.org/index.php?topic=140711.msg1498806#msg1498806	

Hern,	A.	 (2014,	04	30).	Silk	Road	successor	DarkMarket	 rebrands	as	OpenBazaar.	The	

Guardian	.	

Hughes,	 E.	 (1993,	 03	 09).	 A	 Cypherpunk's	 Manifesto.	 Retrieved	 11	 16,	 2015,	 from	

activism.net:	http://www.activism.net/cypherpunk/manifesto.html	

IEEE	Standards	Association.	 (n.d.).	Guidelines	 for	 48-Bit	Global	 Identifier.	 Retrieved	11	

30,	2015,	from	IEEE:	https://standards.ieee.org/develop/regauth/tut/eui48.pdf	

Jøsang.	(1999).	An	Algebra	for	Assessing	Trust	in	Certification	Chains.	Proceedings	of	the	

Network	and	Distributed	Systems	Security	Symposium	.	

Jeffries,	A.	 (2011,	10	04).	The	New	Yorker’s	 Joshua	Davis	Attempts	 to	 Identify	Bitcoin	

Creator	Satoshi	Nakamoto.	Observer	.	

Johnson,	 A.,	Wacek,	 C.,	 Jansen,	 R.,	 Sherr,	M.,	&	 Syverson,	 P.	 (2013).	 Users	 Get	 Routed:	

Traffic	 Correlation	 on	 Tor	 by	 Realistic	 Adversaries.	 Proceedings	 of	 the	 2013	 ACM	 SIGSAC	

conference	on	Computer	&	communications	security	.	

Johnson,	D.,	Matthee,	K.,	Sokoya,	D.,	Mboweni,	L.,	Makan,	A.,	&	Kotze,	H.	(2007).	Building	

a	Rural	Wireless	Mesh	Network.	South	Africa.	

Juels,	A.,	&	Brainard,	J.	(1999).	Client	puzzles:	A	cryptographic	countermeasure	against	

connection	depletion	attacks.	Network	and	Distributed	System	Security	Symposium,	.	

Justin	Norrie,	A.	M.	(2011,	06	12).	Drugs	bought	with	virtual	cash.	The	Sydney	Morning	

Herald	.	

Koetsier,	J.	(2013,	08	14).	GlassUp	raised	$100K	on	Indiegogo	—	but	PayPal	is	refusing	

to	pay	up.	VentureBeat	.	



113	

Kumar,	S.	(2015,	06	16).	OpenBazaar	could	be	America's	most	dangerous	tech	startup.	

Fortune	.	

La'Zooz	Developers.	 (2015,	06	01).	La’Zooz	White	Paper.	Retrieved	11	29,	2015,	 from	

La'Zooz:	http://lazooz.org/whitepaper.html	

Lee,	 A.	 (2012,	 03	 09).	 Interview	 with	 nanotube,	 founder	 of	 the	 Bitcoin-OTC,	 IRC’s	

Marketplace	on	Bitcoin,	Multisigs	and	Security	.	Privacy	Online	News	.	

Lee,	 N.	 (2015,	 02	 08).	 Anonymity	 is	 dead	 and	 other	 lessons	 from	 the	 Silk	 Road	 trial.	

engadget	.	

Loibl,	 A.	 (2014).	 Namecoin.	 Seminar	 Innovative	 Internettechnologien	 und	

Mobilkommunikation	SS2014.	Munich:	Technische	Universität	München.	

Lokot,	T.	(2015,	05	15).	PayPal	Blocks	Donations	for	Printing	Boris	Nemtsov’s	Ukraine	

War	Report.	GlobalVoices	.	

Manne,	R.	(2011,	03).	The	Cypherpunk	Revolutionary.	The	Monthly	.	

Markoff,	 J.	 (2013,	 11	 23).	 Study	 Suggests	 Link	 Between	 Dread	 Pirate	 Roberts	 and	

Satoshi	Nakamoto.	New	York	Times	Bits	.	

Markowitz,	 E.	 (2013,	 12	27).	Meet	 the	Black	Market	That’s	 So	Underground	You	May	

Never	Find	It.	vocativ	.	

Meyer,	M.	(2014).	Continuous	Integration	and	Its	Tools.	Software,	IEEE	,	31	(3),	14-16.	

Mockapetris,	 P.	 (1987,	 11).	 IETF.	 Retrieved	 11	 30,	 2015,	 from	 Domain	 Names	 -	

Implementation	and	Specification:	https://www.ietf.org/rfc/rfc1035.txt	

Morran,	C.	(2011,	12	05).	PayPal	Rains	On	Regretsy's	Secret	Santa	Campaign	Over	Use	

Of	Wrong	Button.	Consumerist	.	

Mui,	L.,	Mohtashemi,	M.,	Ang,	C.,	&	Szolovits,	P.	(2001).	Ratings	in	Distributed	Systems:	A	

Bayesian	Approach.	Workshop	on	Information	Technologies	and	Systems	,	1-7.	

Nakamoto,	S.	(2008,	10	31).	Bitcoin:	A	Peer-to-Peer	Electronic	Cash	System.	

Nakamoto,	 S.	 (2010,	 02	 15).	 Strip	 out	 unfinished	 product,	 review	 and	 market	 stuff.	

Retrieved	 11	 14,	 2015,	 from	 GitHub:	

https://github.com/bitcoin/bitcoin/commit/5253d1ab77fab1995ede03fb934edd67f1359

ba8	

Namecoin	Developers.	(2014,	04).	Namecoin	Specification.	Retrieved	11	30,	2015,	from	

Namecoin:	https://wiki.namecoin.info/index.php?title=Namecoin_Specification	

Naor,	M.,	&	Dwork,	C.	(1992).	Pricing	via	processing	or	combatting	junk	mail.	CRYPTO	.	



114	

Narayanan,	&	Shmatikov.	(2009).	De-anonymizing	Social	Networks.	IEEE	Symposium	on	

Security	and	Privacy	,	173-187.	

Nightingale,	J.	(2011,	08	29).	Fraudulent	*.google.com	Certificate.	(Mozilla)	Retrieved	08	

30,	 2011,	 from	 Mozilla	 Security	 Blog:	

https://blog.mozilla.com/security/2011/08/29/fraudulent-google-com-certificate/	

Novak,	B.	 (2013,	09	05).	PayPal	Freezes	Campaign	Funds.	Retrieved	11	16,	2015,	 from	

Mailpile	 Blog:	 https://www.mailpile.is/blog/2013-09-

05_PayPal_Freezes_Campaign_Funds.html	

OpenBazaar	Team.	(2015,	03	19).	Evolution	Exit	Scam	Shows	Multisig	Isn’t	Enough:	We	

need	 Decentralization.	 Retrieved	 11	 29,	 2015,	 from	 OpenBazaar	 Blog:	

https://blog.openbazaar.org/evolution-exit-scam-shows-multisig-isnt-enough-we-need-

decentralization/	

Orlowski,	A.	(2010,	03	10).	Cryptome:	PayPal	a	'liar,	cheat	and	a	thug'.	The	Register	.	

Orlowski,	A.	(2010,	03	08).	Paypal	freezes	Cryptome.	The	Register	.	

Orlowski,	A.	(2010,	03	16).	PayPal	says	sorry	to	Cryptome.	The	Register	.	

Ormsby,	E.	(2013,	07	10).	The	outlaw	cult.	The	Age	.	

P4Titan.	(2014,	05	17).	A	Peer-to-Peer	Crypto-Currency	with	Proof-of-Burn.	Retrieved	11	

25,	2015,	from	Slimcoin:	http://www.slimcoin.club/whitepaper.pdf	

Pagourtzis,	A.,	Panagiotakos,	G.,	&	Sakavalas,	D.	(2014).	Reliable	broadcast	with	respect	

to	topology	knowledge.	Distributed	Computing	,	107-121.	

Pahwa,	P.,	 Tiwari,	G.,	&	Chhabra,	R.	 (2010,	01).	 Spoofing	Media	Access	Control	 (MAC)	

and	 its	 Counter	 Measures.	 International	 Journal	 of	 Advanced	 Engineering	 &	 Application	 ,	

186-192.	

Penenberg,	 A.	 L.	 (2011,	 10	 11).	 The	 Bitcoin	 Crypto-currency	Mystery	 Reopened.	Fast	

Company	.	

Poisot,	 T.	 (2015).	 Best	 publishing	 practices	 to	 improve	 user	 confidence	 in	 scientific	

software.	Ideas	in	Ecology	and	Evolution	.	

Popescu,	C.	A.	(2004,	04).	Safe	and	Private	Data	Sharing	with	Turtle:	Friends	Team-Up	

and	Beat	the	System.	12th	International	Workshop	on	Security	Protocols	.	

Reid,	F.,	&	Harrigan,	M.	 (2013).	An	Analysis	of	Anonymity	 in	 the	Bitcoin	System.	 In	Y.	

Altshuler,	Y.	Elovici,	A.	B.	Cremers,	N.	Aharony,	&	A.	Pentland,	Security	and	Privacy	in	Social	

Networks	(pp.	197-223).	New	York:	Springer	New	York.	



115	

Rivest,	R.	 L.,	 Shamir,	A.,	&	Wagner,	D.	A.	 (1996).	Time-lock	puzzles	 and	 timed-release	

crypto.	Technical	Report	MIT/LCS/TR-684	.	

Sanchez,	W.	 (2014,	05	25).	Ricardian	Contracts	 in	OpenBazaar.	Retrieved	11	29,	2015,	

from	GitHub	gist:	https://gist.github.com/drwasho/a5380544c170bdbbbad8	

Shubber,	 K.	 (2014,	 04	 30).	 DarkMarket	 Alternative	 Launches	 With	 Friendlier	 Title	

'OpenBazaar'.	CoinDesk	.	

Sisario,	 B.	 (2012,	 01	20).	 7	 Charged	 as	 F.B.I.	 Closes	 a	Top	File-Sharing	 Site.	New	York	

Times	.	

Slepak,	 G.	 (n.d.).	 okTurtles.	 Retrieved	 11	 30,	 2015,	 from	 DNSChain	 +	 okTurtles:	

https://okturtles.com/other/dnschain_okturtles_overview.pdf	

Smith,	 Q.	 (2010,	 09	 10).	 PayPal	 Freezes	 MineCraft	 Dev’s	 600k	 Euros.	 Rock	 Paper	

Shotgun	.	

Spilman,	 J.	 (2013,	 12	 23).	The	 Future	 of	 Bitcoin	 Escrow.	 Retrieved	 11	 29,	 2015,	 from	

opine.me:	http://opine.me/future-of-bitcoin-escrow/	

Stamm,	 S.,	&	 Soghoian,	 C.	 (2012).	 Certified	 Lies:	Detecting	 and	Defeating	Government	

Interception	Attacks	Against	SSL.	Financial	Cryptography	and	Data	Security	,	250-259.	

Standifird,	S.	(2001).	Reputation	and	e-commerce:	eBay	auctions	and	the	asymmetrical	

impact	of	positive	and	negative	ratings.	Journal	of	Management	,	279-295.	

Swartz,	A.	(2011,	01	06).	Squaring	the	Triangle:	Secure,	Decentralized,	Human-Readable	

Names.	 Retrieved	 11	 30,	 2015,	 from	 Aaron	 Swartz:	

http://www.aaronsw.com/weblog/squarezooko	

Szabo,	 N.	 (2005).	 Shelling	 out	 –	 The	 origins	 of	 money.	 Retrieved	 11	 14,	 2015,	 from	

http://szabo.best.vwh.net/shell.html	

Tanase,	M.	(2003,	03	11).	IP	Spoofing:	An	Introduction.	Retrieved	02	10,	2012,	from	The	

Security	Blog:	http://66.14.166.45/sf_whitepapers/tcpip/IP	Spoofing	-	An	Introduction.pdf	

The	New	York	Times.	(2003,	06	26).	Stamps.com	Files	Breach	Of	Contract	Suit	Against	

eBay.	The	New	York	Times	.	

Todd,	 P.	 (2014,	 10	 01).	 OP_CHECKLOCKTIMEVERIFY.	 Retrieved	 from	 BIP:	

https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki	

Todd,	 P.	 (2013,	 01	 05).	Purchasing	 fidelity	 bonds	 by	 provably	 throwing	 away	 bitcoins.	

Retrieved	11	29,	2015,	from	Bitcoin	talk:	https://bitcointalk.org/index.php?topic=134827.0	



116	

Todd,	P.	(2012,	07	04).	Trusted	identities	through	provable	coin	expenditures.	Retrieved	

11	 28,	 2015,	 from	 Bitcoin	 talk:	

https://bitcointalk.org/index.php?topic=91487.msg1007449	

Torpey,	K.	 (2014,	10	14).	Bitcoin	and	Tax	Evasion:	Bringing	 ‘Under	 the	Table’	 Income	

Online.	Blockchain	Agenda	.	

Ugander,	J.,	Karrer,	B.,	Backstrom,	L.,	&	Marlow,	C.	(2011).	The	Anatomy	of	the	Facebook	

Social	Graph.	arXiv	preprint	.	

US	Department	of	Homeland	Security.	(2009).	Interim	Report	on	the	EU	Approach	to	the	

Commercial	Collection	of	Personal	Data	for	Security	Purposes:	The	Special	Case	of	Hotel	Guest	

Registration	Data.		

Wallace,	B.	(2011,	11	23).	The	Rise	and	Fall	of	Bitcoin.	WIRED	.	

Waxman,	 S.	 (2011,	 12	 18).	 How	 Pay-Pal	 Squeezes	 Merchants	 with	 Unfair	 and	 Likely	

Illegal	Business	Practices	.	Alternet	.	

Whitney,	L.	 (2011,	02	25).	PayPal	 reinstates	Bradley	Manning	support	group	account.	

CNET	.	

Wilcox-O'Hearn,	 Z.	 (2001,	 10	 12).	 Names:	 Decentralized,	 Secure,	 Human-Meaningful:	

Choose	 Two.	 Retrieved	 10	 20,	 2001,	 from	 Zooko:	

http://web.archive.org/web/20011020191610/http://zooko.com/distnames.html	

Wile,	 R.	 (2013,	 12	 26).	 Researchers	Retract	 Claim	Of	 Link	Between	Alleged	 Silk	Road	

Mastermind	And	Founder	Of	Bitcoin	.	Business	Insider	.	

Winton,	R.	(2014,	03	07).	Deputies:	Newsweek	Bitcoin	story	quoted	Satoshi	Nakamoto	

accurately.	Los	Angeles	Times	.	

Wired.	(2015,	01	01).	The	Most	Dangerous	People	on	the	Internet	Right	Now.	WIRED	.	

Wood,	G.	(2014).	Ethereum:	A	secure	decentralized	generalised	transaction	ledger.	

Yoo,	 S.	 Y.	 (n.d.).	 About	 NASHX.	 Retrieved	 11	 29,	 2015,	 from	 NASHX:	

http://nashx.com/About	

Zetter,	 K.	 (2013,	 11	 18).	 How	 the	 Feds	 Took	 Down	 the	 Silk	 Road	 Drug	Wonderland.	

WIRED	.	

Zimmerman.	(1995).	PGP:	Source	Code	and	Internals.	Massachusetts:	The	MIT	Press.	

Zimmerman,	M.	(2013,	03	18).	In	Depth:	The	District	Court's	Remarkable	Order	Striking	

Down	 the	 NSL	 Statute.	 Retrieved	 11	 24,	 2015,	 from	 Electronic	 Frontier	 Foundation:	

https://www.eff.org/deeplinks/2013/03/depth-judge-illstons-remarkable-order-striking-

down-nsl-statute	



117	

Zindros,	 D.	 (2014,	 03	 24).	 A	 decentralized	 anonymous	 marketplace.	 Retrieved	 11	 14,	

2015,	from	LiberationTech:	https://mailman.stanford.edu/pipermail/liberationtech/2014-

March/013304.html	

	 	



118	

Appendix:	Relicensing	OpenBazaar	under	MIT	

We	are	happy	to	announce	that	we	decided	to	release	OpenBazaar	under	the	MIT	license.	

OpenBazaar	had	previously	been	released	under	AGPL.	After	lengthy	discussions	on	the	

matter,	the	team	arrived	at	the	consensus	to	move	forward	with	relicensing	under	MIT.	

We	believe	the	MIT	license	will	help	us	better	achieve	our	vision	of	building	a	platform	

of	 free	 trade,	 where	 anyone	 can	 exchange	 goods	 and	 services	 via	 the	 Internet	 in	 an	

uncensored	and	privacy-respecting	manner.	We	feel	it	is	crucial	to	publish	our	code	under	a	

very	permissive	open	source	 license	 in	order	to	 let	people	 freely	build	software	upon	our	

platform	as	they	see	fit.	

While	we’re	 building	 the	 canonical	OpenBazaar	 node	 software,	we	 believe	 the	 power	

and	accessibility	of	 the	OpenBazaar	network	will	 thrive	 through	 the	use	of	a	multitude	of	

clients	who	have	access	 to	our	secure,	pseudonymous,	and	decentralized	system	of	 trade.	

We	expect	 others	 to	build	both	 commercial	 and	 free	 clients	 that	 can	 access	 our	network,	

leverage	the	versatility	of	the	Ricardian	contract	system,	utilize	powerful	blockchain-based	

transactions	 to	 ensure	 safety,	 and	 support	 their	 own	 systems	with	 our	 trust	 and	 identity	

service.	

By	releasing	under	MIT,	we	are	allowing	these	things	to	happen,	and	we	hope	this	will,	

in	turn,	empower	the	OpenBazaar	network	to	widen.	

This	is	our	way	of	saying	we	invite	you	to	participate	in	our	platform,	whoever	you	may	

be.	We	hope	this	will	encourage	developers	to	start	building	code	which	makes	use	of	these	

virtues	and	 feel	 free	 to	base	 it	 on	our	own	code,	 so	 that,	 together,	we	 can	 create	a	world	

where	people	can	trade	with	freedom	and	safety.	
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Appendix:	Creative	Commons	Attribution	4.0	International	Public	

License	

This	 work	 is	 licensed	 under	 the	 Creative	 Commons	 Attribution	 4.0	 International	 Public	

License.	We	make	this	dedication	for	the	benefit	of	the	public	at	large.	

By	exercising	the	Licensed	Rights	(defined	below),	You	accept	and	agree	to	be	bound	by	

the	 terms	 and	 conditions	 of	 this	 Creative	 Commons	 Attribution	 4.0	 International	 Public	

License	 ("Public	 License").	 To	 the	 extent	 this	 Public	 License	 may	 be	 interpreted	 as	 a	

contract,	You	are	granted	the	Licensed	Rights	in	consideration	of	Your	acceptance	of	these	

terms	and	conditions,	and	the	Licensor	grants	You	such	rights	in	consideration	of	benefits	

the	Licensor	receives	 from	making	 the	Licensed	Material	available	under	 these	 terms	and	

conditions.	

Section	1	–	Definitions	

a. Adapted	 Material	means	 material	 subject	 to	 Copyright	 and	 Similar	 Rights	 that	 is	
derived	 from	 or	 based	 upon	 the	 Licensed	 Material	 and	 in	 which	 the	 Licensed	
Material	 is	 translated,	 altered,	 arranged,	 transformed,	 or	 otherwise	modified	 in	 a	
manner	 requiring	permission	under	 the	Copyright	 and	Similar	Rights	held	by	 the	
Licensor.	 For	 purposes	 of	 this	 Public	 License,	 where	 the	 Licensed	 Material	 is	 a	
musical	 work,	 performance,	 or	 sound	 recording,	 Adapted	 Material	 is	 always	
produced	where	the	Licensed	Material	 is	synched	in	timed	relation	with	a	moving	
image.	

b. Adapter's	License	means	the	license	You	apply	to	Your	Copyright	and	Similar	Rights	
in	 Your	 contributions	 to	 Adapted	 Material	 in	 accordance	 with	 the	 terms	 and	
conditions	of	this	Public	License.	

c. Copyright	and	Similar	Rights	means	copyright	and/or	similar	rights	closely	related	
to	 copyright	 including,	 without	 limitation,	 performance,	 broadcast,	 sound	
recording,	 and	 Sui	Generis	Database	Rights,	without	 regard	 to	how	 the	 rights	 are	
labeled	or	 categorized.	For	purposes	of	 this	Public	License,	 the	 rights	 specified	 in	
Section	2(b)(1)-(2)	are	not	Copyright	and	Similar	Rights.	

d. Effective	 Technological	 Measures	means	 those	 measures	 that,	 in	 the	 absence	 of	
proper	authority,	may	not	be	circumvented	under	laws	fulfilling	obligations	under	
Article	 11	 of	 the	WIPO	 Copyright	 Treaty	 adopted	 on	December	 20,	 1996,	 and/or	
similar	international	agreements.	

e. Exceptions	and	Limitations	means	fair	use,	fair	dealing,	and/or	any	other	exception	
or	 limitation	 to	 Copyright	 and	 Similar	 Rights	 that	 applies	 to	 Your	 use	 of	 the	
Licensed	Material.	

f. Licensed	Material	means	the	artistic	or	literary	work,	database,	or	other	material	to	
which	the	Licensor	applied	this	Public	License.	

g. Licensed	 Rights	means	 the	 rights	 granted	 to	 You	 subject	 to	 the	 terms	 and	
conditions	 of	 this	 Public	 License,	 which	 are	 limited	 to	 all	 Copyright	 and	 Similar	
Rights	 that	 apply	 to	 Your	 use	 of	 the	 Licensed	Material	 and	 that	 the	 Licensor	 has	
authority	to	license.	
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h. Licensor	means	 the	 individual(s)	 or	 entity(ies)	 granting	 rights	 under	 this	 Public	
License.	

i. Share	means	 to	 provide	 material	 to	 the	 public	 by	 any	 means	 or	 process	 that	
requires	 permission	 under	 the	 Licensed	 Rights,	 such	 as	 reproduction,	 public	
display,	 public	 performance,	 distribution,	 dissemination,	 communication,	 or	
importation,	 and	 to	make	material	 available	 to	 the	 public	 including	 in	 ways	 that	
members	 of	 the	 public	 may	 access	 the	 material	 from	 a	 place	 and	 at	 a	 time	
individually	chosen	by	them.	

j. Sui	 Generis	 Database	 Rights	means	 rights	 other	 than	 copyright	 resulting	 from	
Directive	96/9/EC	of	the	European	Parliament	and	of	the	Council	of	11	March	1996	
on	the	legal	protection	of	databases,	as	amended	and/or	succeeded,	as	well	as	other	
essentially	equivalent	rights	anywhere	in	the	world.	

k. You	means	the	individual	or	entity	exercising	the	Licensed	Rights	under	this	Public	
License.	Your	has	a	corresponding	meaning.	

Section	2	–	Scope	

a. License	grant.	

1. Subject	 to	 the	 terms	 and	 conditions	 of	 this	 Public	 License,	 the	 Licensor	
hereby	 grants	 You	 a	 worldwide,	 royalty-free,	 non-sublicensable,	 non-
exclusive,	 irrevocable	 license	 to	 exercise	 the	 Licensed	 Rights	 in	 the	
Licensed	Material	to:	

A. reproduce	and	Share	the	Licensed	Material,	in	whole	or	in	part;	and	

B. produce,	reproduce,	and	Share	Adapted	Material.	

2. Exceptions	and	Limitations.	For	the	avoidance	of	doubt,	where	Exceptions	
and	Limitations	apply	to	Your	use,	 this	Public	License	does	not	apply,	and	
You	do	not	need	to	comply	with	its	terms	and	conditions.	

3. Term.	The	term	of	this	Public	License	is	specified	in	Section	6(a).	

4. Media	 and	 formats;	 technical	 modifications	 allowed.	 The	 Licensor	
authorizes	 You	 to	 exercise	 the	 Licensed	 Rights	 in	 all	 media	 and	 formats	
whether	 now	 known	 or	 hereafter	 created,	 and	 to	 make	 technical	
modifications	necessary	to	do	so.	The	Licensor	waives	and/or	agrees	not	to	
assert	 any	 right	 or	 authority	 to	 forbid	 You	 from	 making	 technical	
modifications	necessary	to	exercise	the	Licensed	Rights,	including	technical	
modifications	 necessary	 to	 circumvent	 Effective	 Technological	 Measures.	
For	 purposes	 of	 this	 Public	 License,	 simply	 making	 modifications	
authorized	by	this	Section	2(a)(4)	never	produces	Adapted	Material.	

5. Downstream	recipients.	

A. Offer	from	the	Licensor	–	Licensed	Material.	Every	recipient	of	the	
Licensed	Material	automatically	receives	an	offer	from	the	Licensor	
to	exercise	 the	Licensed	Rights	under	 the	 terms	and	conditions	of	
this	Public	License.	

B. No	 downstream	 restrictions.	 You	 may	 not	 offer	 or	 impose	 any	
additional	 or	 different	 terms	 or	 conditions	 on,	 or	 apply	 any	
Effective	Technological	Measures	to,	the	Licensed	Material	if	doing	
so	restricts	exercise	of	 the	Licensed	Rights	by	any	recipient	of	 the	
Licensed	Material.	

6. No	 endorsement.	 Nothing	 in	 this	 Public	 License	 constitutes	 or	 may	 be	
construed	as	permission	to	assert	or	imply	that	You	are,	or	that	Your	use	of	
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the	 Licensed	 Material	 is,	 connected	 with,	 or	 sponsored,	 endorsed,	 or	
granted	 official	 status	 by,	 the	 Licensor	 or	 others	 designated	 to	 receive	
attribution	as	provided	in	Section	3(a)(1)(A)(i).	

b. Other	rights.	
1. Moral	rights,	such	as	the	right	of	integrity,	are	not	licensed	under	this	Public	

License,	nor	are	publicity,	privacy,	and/or	other	similar	personality	rights;	
however,	 to	 the	extent	possible,	 the	Licensor	waives	and/or	agrees	not	 to	
assert	any	such	rights	held	by	the	Licensor	to	the	limited	extent	necessary	
to	allow	You	to	exercise	the	Licensed	Rights,	but	not	otherwise.	

2. Patent	and	trademark	rights	are	not	licensed	under	this	Public	License.	

3. To	 the	 extent	 possible,	 the	 Licensor	 waives	 any	 right	 to	 collect	 royalties	
from	 You	 for	 the	 exercise	 of	 the	 Licensed	 Rights,	 whether	 directly	 or	
through	a	 collecting	 society	under	any	voluntary	or	waivable	 statutory	or	
compulsory	 licensing	 scheme.	 In	 all	 other	 cases	 the	 Licensor	 expressly	
reserves	any	right	to	collect	such	royalties.	

Section	3	–	License	Conditions	

Your	exercise	of	the	Licensed	Rights	is	expressly	made	subject	to	the	following	conditions.	

a. Attribution.	
1. If	You	Share	the	Licensed	Material	(including	in	modified	form),	You	must:	

A. retain	 the	 following	 if	 it	 is	 supplied	 by	 the	 Licensor	 with	 the	
Licensed	Material:	

i. identification	of	the	creator(s)	of	the	Licensed	Material	and	
any	 others	 designated	 to	 receive	 attribution,	 in	 any	
reasonable	manner	requested	by	the	Licensor	(including	by	
pseudonym	if	designated);	

ii. a	copyright	notice;	

iii. a	notice	that	refers	to	this	Public	License;	

iv. a	notice	that	refers	to	the	disclaimer	of	warranties;	

v. a	 URI	 or	 hyperlink	 to	 the	 Licensed	Material	 to	 the	 extent	
reasonably	practicable;	

B. indicate	 if	 You	 modified	 the	 Licensed	 Material	 and	 retain	 an	
indication	of	any	previous	modifications;	and	

C. indicate	the	Licensed	Material	is	licensed	under	this	Public	License,	
and	 include	 the	 text	 of,	 or	 the	 URI	 or	 hyperlink	 to,	 this	 Public	
License.	

2. You	may	satisfy	the	conditions	in	Section	3(a)(1)	in	any	reasonable	manner	
based	on	the	medium,	means,	and	context	in	which	You	Share	the	Licensed	
Material.	 For	 example,	 it	 may	 be	 reasonable	 to	 satisfy	 the	 conditions	 by	
providing	 a	 URI	 or	 hyperlink	 to	 a	 resource	 that	 includes	 the	 required	
information.	

3. If	 requested	 by	 the	 Licensor,	 You	 must	 remove	 any	 of	 the	 information	
required	by	Section	3(a)(1)(A)	to	the	extent	reasonably	practicable.	

4. If	 You	 Share	 Adapted	 Material	 You	 produce,	 the	 Adapter's	 License	 You	
apply	must	not	prevent	recipients	of	the	Adapted	Material	from	complying	
with	this	Public	License.	
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Section	4	–	Sui	Generis	Database	Rights	

Where	the	Licensed	Rights	include	Sui	Generis	Database	Rights	that	apply	to	Your	use	of	the	

Licensed	Material:	

a. for	 the	 avoidance	 of	 doubt,	 Section	2(a)(1)	grants	 You	 the	 right	 to	 extract,	 reuse,	
reproduce,	and	Share	all	or	a	substantial	portion	of	the	contents	of	the	database;	

b. if	You	include	all	or	a	substantial	portion	of	the	database	contents	in	a	database	in	
which	You	have	Sui	Generis	Database	Rights,	then	the	database	in	which	You	have	
Sui	Generis	Database	Rights	 (but	not	 its	 individual	 contents)	 is	Adapted	Material;	
and	

c. You	must	comply	with	the	conditions	in	Section	3(a)	if	You	Share	all	or	a	substantial	
portion	of	the	contents	of	the	database.	

For	 the	 avoidance	 of	 doubt,	 this	 Section	4	supplements	 and	 does	 not	 replace	 Your	

obligations	 under	 this	 Public	 License	where	 the	 Licensed	 Rights	 include	 other	 Copyright	

and	Similar	Rights.	

Section	5	–	Disclaimer	of	Warranties	and	Limitation	of	Liability	

a. Unless	otherwise	separately	undertaken	by	the	Licensor,	to	the	extent	possible,	the	
Licensor	 offers	 the	 Licensed	 Material	 as-is	 and	 as-available,	 and	 makes	 no	
representations	 or	 warranties	 of	 any	 kind	 concerning	 the	 Licensed	 Material,	
whether	 express,	 implied,	 statutory,	 or	 other.	 This	 includes,	 without	 limitation,	
warranties	 of	 title,	 merchantability,	 fitness	 for	 a	 particular	 purpose,	 non-
infringement,	 absence	 of	 latent	 or	 other	 defects,	 accuracy,	 or	 the	 presence	 or	
absence	 of	 errors,	 whether	 or	 not	 known	 or	 discoverable.	 Where	 disclaimers	 of	
warranties	are	not	allowed	in	full	or	in	part,	this	disclaimer	may	not	apply	to	You.	

b. To	 the	extent	possible,	 in	no	event	will	 the	Licensor	be	 liable	 to	You	on	any	 legal	
theory	 (including,	 without	 limitation,	 negligence)	 or	 otherwise	 for	 any	 direct,	
special,	 indirect,	 incidental,	 consequential,	 punitive,	 exemplary,	 or	 other	 losses,	
costs,	expenses,	or	damages	arising	out	of	this	Public	License	or	use	of	the	Licensed	
Material,	 even	 if	 the	 Licensor	 has	 been	 advised	 of	 the	 possibility	 of	 such	 losses,	
costs,	expenses,	or	damages.	Where	a	limitation	of	liability	is	not	allowed	in	full	or	
in	part,	this	limitation	may	not	apply	to	You.	

c. The	 disclaimer	 of	 warranties	 and	 limitation	 of	 liability	 provided	 above	 shall	 be	
interpreted	in	a	manner	that,	to	the	extent	possible,	most	closely	approximates	an	
absolute	disclaimer	and	waiver	of	all	liability.	

Section	6	–	Term	and	Termination	

a. This	Public	License	applies	for	the	term	of	the	Copyright	and	Similar	Rights	licensed	
here.	However,	if	You	fail	to	comply	with	this	Public	License,	then	Your	rights	under	
this	Public	License	terminate	automatically.	

b. Where	 Your	 right	 to	 use	 the	 Licensed	Material	 has	 terminated	 under	 Section	6(a),	 it	
reinstates:	

1. automatically	 as	 of	 the	 date	 the	 violation	 is	 cured,	 provided	 it	 is	 cured	
within	30	days	of	Your	discovery	of	the	violation;	or	
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2. upon	express	reinstatement	by	the	Licensor.	

For	the	avoidance	of	doubt,	this	Section	6(b)	does	not	affect	any	right	the	Licensor	
may	have	to	seek	remedies	for	Your	violations	of	this	Public	License.	

c. For	the	avoidance	of	doubt,	the	Licensor	may	also	offer	the	Licensed	Material	under	
separate	terms	or	conditions	or	stop	distributing	the	Licensed	Material	at	any	time;	
however,	doing	so	will	not	terminate	this	Public	License.	

d. Sections	1,	5,	6,	7,	and	8	survive	termination	of	this	Public	License.	

Section	7	–	Other	Terms	and	Conditions	

a. The	Licensor	shall	not	be	bound	by	any	additional	or	different	terms	or	conditions	
communicated	by	You	unless	expressly	agreed.	

b. Any	arrangements,	understandings,	or	agreements	regarding	the	Licensed	Material	
not	stated	herein	are	separate	from	and	independent	of	the	terms	and	conditions	of	
this	Public	License.	

Section	8	–	Interpretation	

a. For	 the	 avoidance	 of	 doubt,	 this	 Public	 License	 does	 not,	 and	 shall	 not	 be	
interpreted	 to,	 reduce,	 limit,	 restrict,	 or	 impose	 conditions	 on	 any	 use	 of	 the	
Licensed	Material	that	could	lawfully	be	made	without	permission	under	this	Public	
License.	

b. To	 the	 extent	 possible,	 if	 any	 provision	 of	 this	 Public	 License	 is	 deemed	
unenforceable,	it	shall	be	automatically	reformed	to	the	minimum	extent	necessary	
to	make	it	enforceable.	If	the	provision	cannot	be	reformed,	it	shall	be	severed	from	
this	Public	License	without	affecting	the	enforceability	of	the	remaining	terms	and	
conditions.	

c. No	term	or	condition	of	this	Public	License	will	be	waived	and	no	failure	to	comply	
consented	to	unless	expressly	agreed	to	by	the	Licensor.	

d. Nothing	 in	 this	 Public	 License	 constitutes	 or	 may	 be	 interpreted	 as	 a	 limitation	
upon,	or	waiver	of,	any	privileges	and	immunities	that	apply	to	the	Licensor	or	You,	
including	from	the	legal	processes	of	any	jurisdiction	or	authority.	

	


