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Abstract

We put forth the first decentralized communication mechanism between proof-
of-work and proof-of-stake blockchains, or combinations thereof. To construct it,
we propose two new cryptographic primitives which function as cross-chain certifi-
cates. For proof-of-stake sources, the ATMS primitive (Ad-Hoc Threshold Multisig-
natures) allows attesting to the shifting of stake from epoch to epoch. For proof-of-
work sources, the NIPoPoWs primitive (Non-Interactive Proofs of Proof-of-Work)
allows compressing proof-of-work into succinct strings that shrink a long blockchain
into a succinct polylogarithmic proof. We provide the first ATMS and NIPoPoWs
constructions. For work, we prove our constructions are secure in both the static
and the variable difficulty setting and we achieve security in the synchronous and
bounded delay settings with concrete adversary bounds in each case. We put forth
the first definition of sidechain security and formally prove our constructions secure.
Our proofs are in the Backbone model for work and in the Ouroboros model for
stake.

Our cross-chain certificates allow the transmission of generic information be-
tween blockchains. We describe multiple applications of our sidechains, including
proof-of-burn-based one-way pegs and two-way pegs. In addition to interoperability,
our protocols enable the transmission of blockchain information for its own internal
use. This allows the construction of superlight clients with exponentially smaller
communication complexity than traditional clients. These superlight clients are the
first asymptotic improvement upon SPV. Additionally, our protocols can be used in
the work setting to create superlight miners, which need only logarithmic state to
mine and are an exponential improvement over standard proof-of-work blockchain
protocols. We demonstrate the feasibility of our schemes with experiments, simu-
lations, and implementations, including measurements of security and performance
metrics. We give concrete proposals for deployment security parameters. We have
worked with the industry to implement our schemes in practice: Our protocols have
been implemented and deployed in the real world proof-of-work blockchains ERGO,
nimiq, WebDollar, and Midnight and the proof-of-stake blockchain Cardano.
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Chapter 1

Introduction

1.1 The Setting

1.1.1 Let there be Bitcoin
Before money, there was debt [64]. Money is a yardstick for measuring it. Sometimes
it takes the form of a gold coin. Not useful in itself, one accepts it because one
assumes other people will. Modern fiat money is not backed by gold, but takes the
form of pieces of paper bills or, more often, bits in the computer systems of banks.
Regardless of their manifestation, all forms of money are debt, which is a social
relation [71].

Money functions as a medium of exchange, as a common measure of value or unit
of account, as a standard of value or standard of deferred payment, and a store of
value [73]. These functions of money rely on the relationship of the individual with
the economic community that accepts money. Each monetary transaction between
two parties is never a “private matter” between them, because it translates to a
claim upon society [136].

This gives rise to the need of consensus. The economic community must be able
to ascertain, in principle, whether a monetary transaction is valid according to its
rules. In a good monetary system, parties of the economic community must globally
agree on the conclusions of such deductions. In simple words, when someone pays
me, I must know that they have sufficient money to do so, and that this money
given to me will be accepted by the economic community when I later decide to
spend it. This judgement of validity consists of two parts: First, that the money
in use has been minted legitimately in the first place. Secondly, that this money
rightfully belongs to the party who is about to spend it, and has not been spent
before, to protect against double spending.

The problem of consensus is solved differently in different monetary systems.
Gold coins had stamps whose veracity could be checked, while paper bills have
watermarking features making them difficult to duplicate. Such physical features
ensure the legitimacy of minting. The problem of double spending is trivial when it
comes to physical matter: If I give a gold coin to someone, I no longer hold that gold
coin and cannot also give it to someone else. When coins are digitized, the problem
of who owns what is solved by the private bank and payment processors. A private
bank centrally maintains the balance of a bank account to ensure a corresponding
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debit card cannot spend more money than it has. In this case, a vendor’s terminal
connects to the bank’s servers to check the validity of the payment (and security
can only be ensured while the terminal is online). These cases involve a trusted
third party, the bank or the payment processor, to maintain a balance and make a
judgement on whether a transaction is valid. The central bank is relied upon for
the legitimacy of minting. Payment processors and banks who maintain account
balances and make a judgement on whether a transaction is valid are relied upon to
prevent double spending. The economic community depends on these third parties
and trusts them for availability and truthfulness.

The cypherpunk political movement and the wave of cryptographers working
on protocols in general have an inherent hatred for trusted third parties. For the
former, they amount to centralization of political power which they wish to see
eliminated. For the latter, it constitutes a technical challenge – if the role of the
trusted third party is fully algorithmizable, why not replace the party by a protocol
ran by the economic community themselves? It is somewhere in the intersection of
the two that blockchain protocols appeared.

Bitcoin was invented by Satoshi Nakamoto in 2008. In a paper titled A Peer-
to-Peer Electronic Cash System [116], Satoshi introduced the first cryptocurrency
and the technology powering it, the blockchain. The paper accompanied an imple-
mentation of what has come to be known as Bitcoin Core, the first cryptocurrency
wallet. Satoshi, whose name was soon deified within the blockchain community,
was nothing but a Japanese pseudonym, the physical identity and whereabouts of
the author or authors still unknown. Never short on drama, the space was shaken
again when Satoshi mysteriously ceased all his online activity in 2011. His online
persona disappeared without a trace, leaving the community leaderless, perhaps in
an attempt to, in a sense, remove the last standing trusted third party from the
picture.

As an electronic currency, Bitcoin enjoys many advantages. The transfer of
a transaction takes a couple of seconds, while transactions become secure against
chargebacks in about an hour. It is easy and cheap to move money across the world
in large quantities, with transaction fees remaining constant regardless of amount
moved (at the time of writing, approximately $0.05). The ecosystem is open, the
reference client open source, and the community can develop their own software to
work with it without requesting permission from anyone.

More interestingly, Bitcoin is the first decentralized electronic currency. Unlike
all previous electronic currencies, it does not require any trusted third party for its
operation. There is no company or operator with privileged access over Bitcoin – no
CEO or corporate network. This makes the Bitcoin network sovereign: It cannot
be shut down by a traditional court of law regardless of the desires of world govern-
ments, unless drastic measures are employed such as shutting down the Internet.
There is no central entity to issue a subpoena to and it will continue to operate as
long as there are users. This also makes the system uncensorable.

1.1.2 Coming to an agreement
Bitcoin is a peer-to-peer network. As such there are no servers and clients. In-
stead, similar to BitTorrent, there are simply nodes which connect to each other
and exchange data. These form the global Bitcoin network, a connected graph of
participants continuously exchanging financial data. They run open source code
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which can be inspected and modified by anyone, and are all treated as equals, none
of them enjoying elevated privileges. Additionally, there is no implicit trust. It is
accepted that some of them will behave adversarially and try to subvert the system
by attempting to spend money they do not own, or by attempting to censor others.

At first glance, given that anyone can modify the code of their node, it seems
that the situation is hopeless. Is it not possible for such a node to fake how much
money they have? Additionally, even if they cannot conjure money out of nowhere,
since money is represented as bits, is it not possible to simply duplicate their wallet
and thus duplicate their money? In this setting, the consensus problem now be-
comes critical and particularly challenging. Bitcoin resolves such issues by making
use of the blockchain. Bitcoin’s security, and in turn our analysis, is for arbitrary
adversaries. The powerful cryptographic setting gives us the tools not only to an-
alyze particular adversarial strategies, but to prove our system can withstand any
adversary, even ones we cannot imagine. As such, our security theorems will begin
“For any adversary...”

To solve the consensus problem, Bitcoin makes a radical shift compared to pre-
vious systems. To allow participants to verify whether a transaction is valid and
whether the payer has sufficient money to execute it, it reveals to all participants
who owns how much money. This is done by dissemminating all transactions to
all participants in the network in a gossiping fashion. These transactions are then
stored by every other node in perpetuity. Any synchronizing node downloads these
historical transactions and stores them, too. By looking at these transactions, it
can deduce whether a party’s claim to spend money is legitimate. The financial
privacy of the parties is not trivially violated, because money is received into public
keys instead of accounts corresponding to real names. Privacy can be significantly
improved when a person employs a new public key for every transaction they are
about to receive [2].

A transaction in Bitcoin is a payment order in the form of a string. It has a
source, which corresponds to a previous transaction receiving the money, and a
destination, which is a public key. In order for a transaction to be valid, the private
key corresponding to the public key in the source must digitally sign the transaction,
including the public key of the new owner. If Alice wishes to pay Bob, she looks
for a transaction which has paid her money that she has not yet spent. She then
creates a payment order in which she writes down the amount she wishes to pay to
Bob, as well as his public key, and signs the order with her private key. She then
broadcasts this transaction on the peer-to-peer network. Bob, who is connected to
the same network, receives the transaction through one of his peers, and verifies its
validity as well as the fact that his own public key has been used in the payment
and that the amount is correct.

Each node organizes the transactions it sees on the network into a ledger, which
is a sequence of transactions. This ledger determines which party has how much
money. The node can then evaluate the validity of a new incoming transaction by
assessing whether there are sufficient funds. For the monetary system to function,
the parties must globally agree on a common ledger. If Alice receives a payment
from Bob and her ledger depicts this, but Charlie’s does not, then Alice’s money
received from Bob cannot be used to pay Charlie.

A malicious node can attempt to double spend. If Eve legitimately owns a
coin, she can create a valid transaction tx paying Alice with that coin, as well as
a valid transaction tx′ paying Bob with that coin. If any of the two transactions
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are individually broadcast on the network, it will be considered valid. However, if
both transactions are broadcast on the network, they cannot both be valid, because
Eve only ever had one coin. As such, a strategy against double spending must be
employed when such a sitatuation occurs.

Simple strategies do not work. For example, observing that Eve must be mali-
cious to have created a double spend, the nodes could reject both of her transactions.
However, this now enables Eve to first pay Alice for some service, but later invali-
date that payment by also paying Bob. While Eve cannot profit from this, she can
harm Alice. The alternative strategy of waiting a fixed time∆ to determine whether
there have been any double spends prior to accepting a transaction also does not
work. The reason is that Eve could broadcast her double spending transaction at
a time just before ∆ has elapsed. Because the network is not fully synchronized,
some parties will receive the transaction prior to time ∆, while others will receive
it after time ∆, causing the network to disagree about whether the first transaction
is valid.

1.1.3 Chains of blocks
To solve this problem, Bitcoin mandates that nodes place transactions in chrono-
logical order. As Eve can lie about the timestamps of her transactions or broadcast
them at a delayed time, timestamps cannot be trusted.

Transactions on the network are collected by nodes into bundles called candidate
blocks. These blocks are simply strings concatenating the transactions together with
some metadata. The nodes that collect them are known as miners and anyone can
participate as a miner. Each miner attempts to mine the candidate block it has
created, turning it into a block. Mining involves solving a moderately hard problem
and has a small, but not negligible, probability of success. When the problem is
successfully solved, we say that a block has been found ormined. The block contains
the transactions, metadata, as well as the solution to the moderately hard problem.
The moderate hardness of mining ensures blocks are created at a predetermined
expected rate. For Bitcoin, this rate is 10 minutes. Once a block is found, it is
broadcast to the rest of the network. A transaction is considered confirmed once it
has been included in a block. Transactions inside blocks are placed in an arbitrary
order determined by the party creating the block. Block validity mandates that no
double spends appear within the same block. Once a transaction is confirmed in a
block, it is considered to have been placed in order among other transactions.

A block includes a pointer to the most recent block seen by the node. This
creates a chain of blocks or blockchain. As each block contains transactions, reading
the transactions within the blockchain in order gives a unique ledger signifying
which transaction happened before which other transaction. The validity of the
blockchain requires that the transactions in the new block do not conflict with
transactions in the past chain, and so reading the transaction sequence of a valid
blockchain always gives a valid transaction sequence, without any double spends.
Whenever a node receives a blockchain from the network, if it is longer than its own
blockchain in the number of blocks it contains, then it abandons its own blockchain
and adopts the longer one. This is known as the longest chain rule. The first block
of the blockchain, called the genesis block, was fixed by the protocol at the time of
initial deployment.

Surprisingly, this simple rule solves the consensus problem. Because blocks are

24



Figure 1.1: A blockchain with some temporary forks. Squares depict blocks.

G

broadcast once every 10minutes on average, this leaves a sufficient window of silence
between blocks, leaving enough time for the message of the newly found block to
travel through the peer-to-peer network, so that honest parties will adopt the same
chain. If it happens that two blocks are found almost simultaneously by chance,
some parties will mine on top of one chain, while others will mine on top of another.
Once a new block is found, one of the two chains will grow longer and the population
will migrate to the longest chain, abandoning the shorter chain. If no other blocks
are found and broadcast in close temporal proximity to this one block, all honest
will adopt this newly generated block and converge. These situations are known
as temporary forks. The chance of two blocks being found simultaneously again
and again is small, and hence eventually the network will converge to a common
view. This is illustrated in Figure 1.1. The honest parties may have some small
disagreement about which few blocks are at the end of the blockchain. However,
they will share a large common prefix. As such, a transaction is considered safe
once it has been buried under a sufficient number of blocks.

Once a transaction tx is confirmed by becoming included in some block b and
that block is buried under a sufficiently large number of blocks, it becomes difficult
for the adversary to double spend using a conflicting transaction tx′. Consider the
execution in Figure 1.2. As blockchains extending b do not validate if they contain
tx′, the adversary must fork the blockchain and start mining on top of the parent of
b. Consider the first block b′ of that fork in which tx′ is confirmed. This becomes a
mining race between the honest parties, who are mining on top of the longest chain
extending b and confirming tx, and the adversary who is mining a new chain on top
of b′ and confirming tx′. If we assume the honest parties control the majority of the
computational power on the network, the chain that the honest parties mine will
grow faster than the one extended by the adversary. This is known as the honest
majority assumption.

Figure 1.2: A minority adversary fails to double spend a deeply burried transaction.

G b

b’

Let us now see why blocks are generated approximately every 10 minutes. When
a miner is asked to find a block, they collect the unconfirmed transactions into a
string x. They then attempt to find a nonce such that H(x ∥ nonce ∥h′) ≤ T , where
T is a constant target, H is a cryptographically secure hash function, and h′ is
the hash of the previous block. When we arithmetically compare hash values like
this, we treat the bit output of the hash function as a binary number and interpret
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it numerically. In the case that T is a power of 2, this equation is equivalent to
requiring every block hash must have its most significant bits set to 0. As the hash
function has an unpredictable output, this problem becomes more difficult as T
becomes smaller. The only known way to solve the problem is by brute forcing the
nonce until a suitable value is found. This process is known as proof-of-work. While
T is constant for short periods of time, it is adjusted over longer periods of time to
achieve the desired block production rate. This is known as variable difficulty.

Proof-of-work systems take significant computational resources to secure, be-
cause they must ensure honest parties are putting in more effort than any possible
adversary. While the computational resources go towards securing the network and
are not wasted, a question is whether an alternative protocol can achieve compara-
ble security with lower computational power consumption. Such a protocol would
be more efficient and environmentally friendly. Towards this direction, the idea
of proof-of-stake was introduced. The concept is the same as with proof-of-work
in that blocks and chains are formed which confirm transactions and are issued
at a controlled rate. However, the assumptions are changed. Instead of assum-
ing honest majority by computational power, honest majority by stake is assumed.
Stake denotes the amount of money one owns within the system. This assumption
essentially mandates that the majority of the money in the system is owned by par-
ticipants behaving honestly. As money changes hands with time, this assumption
is presumed to hold throughout the execution despite shifting stake. Given that
stake is owned by cryptographic keys, instead of having nodes attempt to solve the
proof-of-work computational puzzle by brute forcing, the nodes are simply asked to
sign off a block occasionally using the same key that signifies money ownership.

Therefore, a node is asked to sign off a block every once in a while. This node,
known as a leader, is a representative among the rest of the stakeholders and is
chosen at random among the stakeholders as follows. Among all the coins in the
system, a coin is selected uniformly at random. This is known as following the
satoshi. As richer participants own more coins, their probability of being selected is
higher. While this sampling process will sometimes elect adversarial nodes, it elects
nodes according to the underlying stake distribution. We know that following this
election process leads to a blockchain which behaves similar to proof-of-work: While
there can be short temporary forks due to adversarial behavior, soon enough the
honest parties prevail and keep working on the longest chain. One challenge in
the implementation of this protocol is how to do the sampling among the coins
in a manner that is unpredictable. Due to technical reasons, the protocol freezes
the stake distribution for a specific duration called an epoch during which an old
view of the stake distribution is used for sampling. Once an epoch has passed,
the altered stake distribution is observed and a new snapshot is taken. Under the
assumption that stake shifting does not occur at a very large rate, the bounded
stake-shift assumption, this sampling method is secure.

One important detail that is needed to make the proof-of-stake protocol secure
is to ask parties to evolve their private keys once every epoch. In this process, an
honest party uses their old private key to produce a new one in a way that allows
anyone holding the respective public key to verify the evolution was truthful. The
old key is then destroyed. This is useful to ensure that each key corresponds to
a particular epoch. A key corresponding to an epoch cannot be used to create
votes on blocks corresponding to older epochs, giving the system forward security.
This protects against an event in which a majority stakeholder, due to stake shift-
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Figure 1.3: A Merkle Tree of transactions making use of a cryptographicallys
secure hash function H. Black nodes indicate raw transactions. Lightly shaded
nodes indicate hashes. The root is shown at the top.

ing, becomes a minority stakeholder. The honest majority assumption allows that
stakeholder to then become corrupt. It is important that the adversary corrupting
the minority stakeholder cannot reuse old keys that corresponded to the time when
the stakeholder was holding the majority of the stake.

1.2 Motivation

1.2.1 Superlight Clients
Given an honestly adopted chain, consensus security is based on the premise that
it is difficult to create a competing chain which deviates significantly and has more
proof-of-work than the existing honestly adopted chain. To determine which fi-
nancial history is the valid one, a verifier node booting for the first time into the
network, connects anew to multiple provers, at least one of which is assumed to
be honest. The verifier then downloads all available blockchains from its peers and
adopts the longest one. The verifier must choose the chain that respects the pro-
tocol rules and corresponds to the most proof-of-work. In order to do that, the
proof-of-work of every block in the chain must be presented and verified.

Nodes on the blockchain that maintain the whole history of transactions and
chain are known as full nodes. Typically, miners are full nodes, but some non-mining
nodes are also full nodes. Proof-of-work blockchain clients such as mobile wallets
today are based on the Simplified Payment Verifications (SPV) protocol, which was
described in the original Bitcoin paper [116], and allows them to sychronize with
the network by downloading only block headers and not the entire blockchain with
transactions. However, such initial synchronization still requires receiving all the
block headers.

Instead of having each block contain all of its transactions and performing
proof-of-work on it, transactions are first hashed into a special structure known
as a Merkle Tree. A Merkle Tree of a transaction sequence x is structured as il-
lustrated in Figure 1.3. Using a cryptographically secure hash function H, each
transaction is hashed to obtain its transaction id. Subsequently, each two ids are
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concatenated together and hashed again to obtain their parent. These parents are
again concatenated and hashed together to obtain their parent, until we arrive at
a single root node x which contains a hash representation of every transaction in
x. The proof-of-work of the block is then computed by finding a nonce such that
H(x ∥ nonce ∥h′) ≤ T . The transactions x are known as the block content, while the
portion x ∥ nonce ∥h′ which is hashed for proof-of-work purposes is known as the
header.

This chain C of block headers grows linearly in time. To put the problem in
perspective and motivate the question, at the time of writing, Ethereum’s blockchain
(as measured by the amount of data that needs to be downloaded to synchronize
a full node) is currently more than 250GB, and the size of block headers is 4.6GB.
The latter amount is currently too large for a user-friendly mobile wallet.

The problem we concern ourselves with is whether it is possible to optimize this
protocol, achieving communication o(|C|). We study the question of whether better
protocols exist and in particular if downloading fewer block headers is sufficient to
securely synchronize with the rest of the blockchain network. Our requirement is
that the system remains decentralized and that useful facts about the blockchain
(such as the Merkle root of current account balances in Ethereum) can be deduced
from the downloaded data. This means that we don’t want to utilize techniques such
as checkpointing (in which the verifier software is patched by its trusted developer to
include a later block as a neon genesis replacement to the genesis block) or trusting
a server to give us the correct blockchain.

Our setting is as follows. A superlight verifier wakes up having only the first block
of the blockchain, the genesis block. In the meantime, the blockchain has grown
and contains many blocks. The verifier wishes to know whether a transaction is
confirmed to decide if a payment has been made. It connects to multiple other
full nodes, that we term provers throughout this work, who maintain the whole
blockchain. At least one connection will be to an honest node. All the provers send
claims to the verifier, some claiming that the transaction is confirmed, while others
that it is not. The goal of the verifier is to decide which of these claims is true. The
claims are accompanied by evidence to illustrate them, but must be short in length
so that the client can synchronize quickly. In particular, we aim for exponentially
shorter messages O(polylog(|C|)) instead of the standard O(|C|) that an SPV node
requires. These superlight nodes are useful when a client such as a mobile wallet
wishes to synchronize with the network quickly. Other facts beyond transaction
inclusion, such as account balances, are also useful to prove.

The question the verifier is trying to answer is not simply whether the transac-
tion has been included in some valid block, but whether that block belongs to the
longest chain and hence the economic participants will also agree that the trans-
action took place. For the proof-of-work case, this chain corresponds to the chain
containing the most proof-of-work that respects the protocol rules (such as the oc-
casional recalculation of the target T due to changes in the total mining power of
the network). For proof-of-stake, this chain corresponds to the longest chain which
has valid signatures by the majority of the stakeholders at each point in time, keep-
ing in mind that stake is shifting from epoch to epoch. In both cases we are trying
to create succinct proofs about the fact that proof-of-work or proof-of-stake took
place without presenting every proof-of-work nonce or every proof-of-stake signa-
ture. This gives rise to Proofs of Proof-of-Work and stake.

While it is useful for mobile wallets to synchronize quickly, if a good protocol for
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superlight nodes is developed, one natural question that arises is whether the same
protocol can also be used for full nodes and miners. This would help quickly create a
new miner and have it working on the chain without needing a long synchronization
time. Can miners, like superlight clients, also synchronize quickly with the rest of
the network while achieving security comperable to a full node? And if so, do we
need any extra assumptions and what are the security limitations of such a model?

1.2.2 Interoperability
Since the invention of Bitcoin in 2009, numerous other cryptocurrencies have fol-
lowed, improving upon Bitcoin on several aspects. The most prolific of these is Ethe-
reum [35], which explores the concept of smart contracts. These Turing-complete
programs enable developers to define complex conditions which must be satisfied
to spend money, beyond the simple signatures that Bitcoin allows as conditions
for spending. They are programmed in specialized programming languages such as
Solidity and run on top of the Ethereum Virtual Machine [151]. Each contract is a
sovereign entity that can own money and define the rules under which this money
can be spent. These contracts execute autonomously. Their correct execution is
verified by miners on the network, in a similar way that signatures are verified in
Bitcoin’s case.

Other cryptocurrencies that include significant contributions and experimenta-
tion are Litecoin [101] which aims to be more egalitarian [74]; Monero [149] and
ZCash [114, 69], which improve upon the generally poor [111, 132, 66] privacy of
Bitcoin; Namecoin [105] which was a first attempt at creating a decentralized DNS
alternative; Dogecoin [107], which experiments with inflationary economics in con-
trast to Bitcoin’s deflationary nature; Bitcoin Cash [95], which experiments with
larger block sizes; and Cardano [89], which uses proof-of-stake instead of proof-of-
work.

It is possible to trade one coin for the other. For example, if one wishes to
exchange Bitcoin for Ethereum, they need to find a counterparty who wishes to
exchange Ethereum for Bitcoin (this is generally easy to do through centralized
services). However, each of these blockchain systems remains isolated. The concept
of a cryptocurrency and its respective chain remain intertwined: A Bitcoin lives in
the Bitcoin chain, while an Ether lives in the Ethereum chain. The interoperability
problem pertains to the ability to move a cryptocurrency from its native chain to
a remote chain, a one-way peg, and then back, a two-way peg. If Bitcoin and
Ethereum were interoperating, it would be possible to move one Bitcoin from the
Bitcoin chain to the Ethereum chain and back. The Bitcoin would retain its nature
during its lifespan within the Ethereum chain. It would always be a Bitcoin, not
an Ether. For example, it would maintain the same exchange rate against other
currencies. While on the Ethereum chain, it would also enjoy the benefits of the
Ethereum ecosystem. For example, it would make itself subject to smart contracts
and enjoy the faster confirmation speed of Ethereum. At the same time, it would
make itself subject to the security assumptions of Ethereum. For example, it could
subject itself to more limited security protection under a smaller amount of honest
computational power devoted to the mining of the chain it lives on. The bitcoin
would have the benefits and shortcomings of the Ethereum environment only as
long as it lives on the foreign blockchain. When it returns back to its native chain,
it should again behave within the context of the Bitcoin blockchain. The bitcoin
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Figure 1.4: A motivating but imaginary two-way peg. A bitcoin is moved from
its native Bitcoin chain to the Ethereum chain and back. While on the Ethereum
chain, it is still a bitcoin.

has become decoupled from its blockchain. This is illustrated in Figure 1.4.
More generally, and beyond the transfer of a cryptocurrency asset from one

blockchain to another, it is useful to allow one blockchain to consume information
pertaining to another. Today, smart contracts are confined to access data only
within the blockchain they run on, such as data maintained within the state of
the smart contract itself. Access to external data requires a trusted third party
or group thereof to vouch for the data validity [159]. As contracts can represent
complex financial conditions and trust relationships, it is useful to give them the
ability to take decisions based on events that take place on different chains. One
example could be an Ethereum contract which gives out shares in a decentralized
company (in the form of tokens) conditioned on the fact that a series of Bitcoin
payments have been made in regular intervals during a predetermined period of
time. Another example could be an insurance contract running on the Ethereum
blockchain which, conditioned on the fact that a particular Bitcoin account fails to
receive a predetermined amount of money until a particular point in time, releases
an Ethereum payment to its policyholder. As one can readily see from these not
so complex examples, such contract conditions that go beyond a simple payment
cannot be readily encoded in the form of an atomic swap or a two-way peg and may
not even have a definite counter-party in each chain.

As such, we are looking for a generic cross-chain communication mechanism
which allows blockchains to interoperate, achieving one-way pegs, two-way pegs, as
well as generic information transfers. Such a system should allow smart contracts
on one blockchain to receive and react to events taking place on another blockchain
without the need of trusted parties. We term this generic communication mecha-
nism a sidechain1. Despite their widely agreed usefulness there exist currently no
sidechain constructions that are decentralised, efficient, and generic at the same
time. One critical challenge in desigining these protocols is that the aim is to allow
the two chains to remain miner isolated. This means that, while users could main-
tain wallets in multiple chains and observe them for transactions of their interest, as
well as forward information between the chains, the miners that run the consensus
protocol in each chain cannot be required to connect to multiple networks. For
example, it is desirable that Ethereum can react to Bitcoin events without requir-
ing the Ethereum miners to connect to (or even know about the existence of) the
Bitcoin network.

1We note here that previous work has used this term in a narrower context than the generic informa-
tion transfer we propose here. This is one reason why the term cross-chain communication for a generic
protocol may be preferable.
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Interoperability can also be a useful mechanism to enable interfacing between
decentralized blockchains and more traditional centralized systems such as accounts
whose balances are held by custodians and are subject to the traditional laws of par-
ticular countries. Such a construction could allow for a smoother transition from
the legacy monetary system to a blockchain-enabled system. The same mechanisms
that allow a smart contract in Ethereum to verify a remote Bitcoin payment can be
used to allow a permissioned chain (in which the consensus is achieved by majority
voting between a centralized committee) to verify a Bitcoin payment without requir-
ing its consensus maintainers to connect to the Bitcoin network. It is, of course,
trivial to write an Ethereum verifier that checks whether a transaction has been
confirmed within such a permissioned network (by simply verifying and counting
signatures). Therefore in this thesis we will concentrate on consuming data from
decentralized chains, as the other way around is straightforward.

While sidechains were not originally proposed for scalability purposes, they can
also be used to off-load the load of a blockchain in terms of transactions processed.
For this purpose, a particular blockchain, which we will call the mainchain, that
wishes to off-load its load can create multiple separate sidechains, that maintain
consensus independently. A cross-chain protocol can then be used to connect each
side chain to the main chain, with the main chain functioning as a financial hub.
While communication protocols between the main chain and the side chain can be
symmetric, their use cases are different. In this application, the use of the main
chain is as a permanent store of value as well as an interface between different
side chains, while each side chain is used for everyday transactions. As long as
2-way pegs are enabled, a particular sidechain can offer specialization by, e.g., in-
dustry, in order to avoid requiring the mainchain to handle all the transactions
occurring within a particular economic sector. As long as the majority of transac-
tions does not cross economic sectors, this provides a straightforward and simple
way to “shard” blockchains [106, 92, 155]. Another way of sharding could be by
geographical location.

Lastly, a child side chain can be created from a parent main chain as a means of
exploring a new feature, e.g., in the scripting language, or the consensus mechanism
without requiring a soft, hard, or velvet fork [87, 158]. The side chain does not need
to maintain its own separate currency, as value can be moved between the sidechain
and the main chain at will. If the feature of the sidechain proves to be popular,
the main chain can eventually be abandoned by moving all assets to the sidechain,
which can become the new main chain. In fact, such experimentation with new
features was one of the original motivators for sidechains [12].

Given the benefits listed above, there is a pressing need to address the ques-
tion of sidechain security and feasibility, which so far has not received any formal
treatment.

1.3 Our Contributions

1.3.1 Superblocks and NIPoPoWs
We create a decentralized blockchain client or verifier which, having only genesis,
connects to multiple provers, at least one of which is honest, is able to ascertain
the confirmation of a transaction. Using its full local chain, each prover generates a
succinct proof and sends it to the verifier. Adversarial provers can send anything in
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the place of a proof. By comparing the proofs in terms of the amount of proof-of-
work they encode, the verifier deduces which blockchain contains the most proof-of-
work without receiving and validating every block header. The proofs the provers
send are only generated once and do not require multiple interrogation questions
from the verifier. As such, these proofs are non-interactive and we call them Non-
Interactive Proofs of Proof-of-Work (NIPoPoWs).

To create such succinct representations of work, we look at the distribution of
block hashes in the chain. Every valid block B satisfies the proof-of-work equation
H(B) ≤ T where T is the mining target, but some blocks satisfy it better than
others. Some blocks so happen to have a hash with value much lower than T , even
though this is not required for validity and is not intentional. For example, some
blocks will satisfy H(B) ≤ T

2 . Concretely, because the hash function is uniformly
distributed, in expectation half the blocks will satisfy H(B) ≤ T

2 , a quarter of them
will satisfy H(B) ≤ T

4 , an eighth will satisfy H(B) ≤ T
8 , and in general only a 1

2µ

fraction of blocks will satisfy H(B) ≤ T
2µ . If a block satisfies this inequality for

some µ ∈ N, we say that it is of level µ and call it a µ-superblock (and note that
a µ-superblock for µ > 0 is also a (µ − 1)-superblock). The probability of a valid
block B being a µ-superblock is:

Pr[H(B) ≤ T

2µ
|H(B) ≤ T ] =

1

2µ

Under this light, the blockchain looks as illustrated in Figure 1.5. Of course,
because block hashes behave randomly, this image will be probabilistic and blocks
may not be precisely distributed as expected.

Figure 1.5: Superblocks distributed within a blockchain. Higher levels have achieved
a higher difficulty during mining.
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When a chain C is mined, there will therefore exist a subsequence of it, consisting
only of blocks of level µ, which is going to be only |C|2µ blocks long. The core idea
of the construction is this: Instead of sending the full chain, the prover chooses a
level µ and sends this as a representative of the underlying work. Presenting a block
of level µ captures the fact that work of about 2µ has happened around it without
presenting that work itself. As such, a superblock is a way for the prover to sample
the blockchain in a way that can convince the verifier: When the verifier receives
m blocks of level µ, it can deduce that approximately m2µ regular blocks must
exist around those superblocks. Constructions based on this simple idea instantiate
NIPoPoWs by leveraging superblocks and we call them superblock NIPoPoWs.

A simplified description of our protocol then works as follows. Initially, some
value m is fixed, representing the number of blocks that the verifier wishes to
receive to feel safe. This m is a constant parameter. The honest prover then
chooses the highest level µ which has at least m blocks at that level. Choosing
any level above µ would not satisfy the verifier, as fewer than m blocks would be
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transmitted. Choosing any level below m would be wasteful, as more blocks would
have to be transmitted. This prover choice is illustrated in Figure 1.6. Suppose
that the verifier receives two proofs from two provers, one of which is honest while
the other adversarial, and wishes to compare them. The verifier first checks that
all the blocks it has received really are µ-superblocks by verifying the proof-of-work
equation parameterized by µ is satisfied, and that each proof it has received has
at least m blocks. Then, just as an SPV verifier would compare the length of two
full chains, the NIPoPoW verifier now simply counts the number of blocks it has
received from the two provers and announces that the one with the most blocks is
the winner. If the verifier receives the proofs π1 and π2, then the decision is simply
the result of the comparison |π1| > |π2|.

Figure 1.6: A superblock NIPoPoW prover chooses the threshold (dashed line)
corresponding to level µ = 2 for the verifier requirement m = 4.
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The crucial point in terms of security is that an adversary cannot fake this set
of superblocks without actually putting in the work. An adversary that produces a
µ-superblock will also in expectation generate some 2µ regular blocks in the process
(even though the adversary may of course choose to discard these). Because the
adversary has minority mining power, an adversary cannot create a longer sequence
of µ-superblocks faster than the honest parties create one, for the same reason that
an adversary cannot create a longer regular blockchain faster than the honest parties
create one.

Let us count how many different levels µ there are in a chain. If the chain has
length |C|, then going up to level 1 cuts the chain in half, and we expect to see
only |C|2 superblocks of level 1. Moreover, this continues with subsequent increases
in level, until at level µ = log |C| we expect to find only |C|2µ = 1 block. As soon as
we get to level log |C|+ 1, we expect to find no more blocks of that level or above.
The number of levels is therefore log |C|.

To ensure that the blocks sent by the prover cannot be reordered in the wrong
chronological order, just as in the regular underlying blockchain, we need to intro-
duce pointers that point between consecutive blocks of the same level. As such, a
µ-superblock must include in its contents a pointer to the most recent µ-superblock
that was mined before it. Unfortunately, we cannot add just these exact pointers
to the block contents, because the pointer data must be included in the contents
that are hashed during the attempt to find proof-of-work. It seems that we must
predict what level a block will have prior to it being mined, but its level depends on
its hash, which is a product of its mining. Therefore, we will simply include all the
pointers that could be needed regardless of what level the block achieves. Prior to
mining any block, the miner collects a pointer to the most recent superblock of each
level it has seen so far. It places these pointers in a list which it then includes in the
block it is mining. When the block is mined, regardless of what level it achieves, it
will have a pointer to the most recent block of its own level.
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The number of pointers that need to be included in this manner is small because
the number of levels the blockchain will ever reach is log |C|. This interlinking is
illustrated in Figure 1.7. To avoid premining of superblocks (blocks that were
mined prior to the creation of the genesis block), we require that the interlink
vector of every block also contains a pointer to the genesis block. By having miners
add these extra pointers to blocks, the verifier can check that the blocks in each
proof presented have been mined in the order given. We see that NIPoPoWs are
subchains of the blockchain in that they form subsequences of the block sequence
and also maintain pointers across. The change of adding interlink pointers seems
on the surface to require that miners change their behavior and so a hard fork (a
breaking change of consensus protocol rules) is required. However, the upgrade can
be deployed using a soft fork (a backwards-compatible change), or even without
requiring any miner upgrade in what we introduce as a velvet fork.

Figure 1.7: The interlinked blockchain. Each superblock is drawn taller according to
its level. A new block links to all previous blocks that have not been overshadowed
by higher levels in the meantime.
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Because the two provers may send chains of different levels, it may be necessary
for the verifier to compare the two proofs according to different levels. For this
purpose, the verifier weights the proofs according to their level prior to comparison.
The result of the comparison is then 2µ1 |π1| > 2µ2 |π2|, where µ1 and µ2 indicate the
level of proofs π1 and π2 respectively. If the two proofs are at the same level, this
comparison reduces to a simple comparison by count. We term this comparison
which can happen across levels the charity construction. As we will see in later
chapters, the verifier can choose to compare the two proofs at a common level, sim-
plifying the construction, albeit to some loss in security. We term the construction
which compares across a common level the distill construction.

1.3.2 Comparing NIPoPoWs
While the protocol we have presented so far works in expectation against any adver-
sary, we want to design a protocol that also works with overwhelming probability.
Let us now discuss the role of the security parameter m that the verifier requires
for safety. The property we can prove from the honest majority assumption is that,
in a given period of time that is sufficiently long, the honest miners mining on their
regular 0-level chain will generate more µ-superblocks than an adversary with any
mining strategy. This “sufficiently long” period of time is ensured by the m security
parameter that the verifier requires. If any of the two superchains consists of at
least m superblocks, this must necessarily have required a long time to generate
as long as m is sufficiently large (in later chapters, this will be made precise with
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a Negative Binomial Chernoff bound). If a sufficiently long time has passed, the
length of the superchains will be close to their expectations and correspond to the
mining power of the adversary and the honest parties respectively (this will later be
made precise with a Binomial Chernoff bound). Because the adversary has minority
mining power, their superchain will be shorter with overwhelming probability. As
we increase the parameter m to some reasonable value (say m = 128), the prob-
ability that an adversary is able to attack our protocol drops exponentially in m
(according to a function asymptotically similar to 2−m).

If the honest and adversarial verifiers send chains that share some blocks, there
is some probability that the adversary is able to convince an honest verifier of an
invalid claim. What we wish to ensure is that the honest NIPoPoW verifier will
never be made to disagree with a corresponding SPV verifier. For the argument
outlined above to hold, we must ensure that the verifier requests from the two
provers at least m superblocks that are distinct in each of their proofs. This ensures
the adversary will not be able to reuse blocks from the honest chain in her proof.
Towards this purpose, the verifier asks the two provers to choose a level µ such that
there are at least m blocks in each of their proofs after the most recent block shared
among their chains (the lowest common ancestor block or LCA block) as illustrated
in Figure 1.8.

Figure 1.8: A comparison across two chains sharing an LCA. The comparison must
be performed on the independent subchain suffixes after the highlighted block.

C1 

C2 

This can be solved by introducing interactivity in a protocol that works as
follows. Initially, both provers send their highest level µ that has at least m blocks
to the verifier. The verifier inspects both proofs and finds their LCA block b. He
then sends the LCA back to the provers and requests more information. Each
prover subsequently finds the highest level µ′ that has at least m blocks after block
b. He sends all blocks of level µ′ that follow b. The verifier again inspects the two
proofs and finds their new LCA block b′. The process continues until one of the two
provers is not able to keep up with the interrogation. The number of interrogation
steps will be logarithmic, as they are bounded by the number of levels. Because
there can be no two chains at level 0 which are both long and significantly diverge,
one of the two provers will necessarily fail.

While it seems that this requires some interactivity, in reality the provers can
provide sufficient evidence upfront so that no interrogation is needed and the verifier
can compare proofs completely offline. The prover must ensure that there are
sufficient blocks in the proof to enable a comparison regardless of which block is
deemed to be the LCA block (as the adversary can create a proof which essentially
chooses the LCA in her favour). As such, no matter what block in his proof is chosen
as the LCA block b after which the comparison will be performed, the honest prover
wants to ensure he will be successful. The prover includes sufficient blocks so that
for every block b in his proof (a candidate LCA), there exists some level µ for which
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Figure 1.9: A Non-Interactive Proof of Proof-of-Work based on superblocks. Multi-
ple squares stacked above one another illustrate the same block which spans multiple
superblock levels. The solid blocks are included in the proof. The dashed blocks
are not selected for proof inclusion at that level.
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at least m superblocks of that level will appear after b. Furthermore, to ensure no
work is missed, the honest prover wants all his blocks of the chosen level to appear
after b.

This requires us to build a prover that sends blocks at multiple levels. A sum-
mary of the construction is then as follows. The prover first chooses the highest
level µ which has at least m blocks. He sends all µ-superblocks. Then, for each
lower level j−1, he sends sufficient blocks of level j−1 to cover the same range that
the last m blocks of level j span. The blocks that are selected for sending in such
a NIPoPoW are illustrated in Figure 1.9. In this example, the protocol is working
with parameter m = 3. Initially, the prover chooses the highest level µ that has
at least m = 3 blocks. In this case, he selects µ = 2 which has 4 ≥ m blocks, as
level 3 would be insufficient with only 2 < m blocks. All 4 blocks of µ = 2 are
included. Subsequently, the last m = 3 blocks of level µ = 2 are considered and
the 6 blocks of level 1 that span the same range are also included. Lastly, the last
m = 3 blocks of level µ = 1 are considered and the last 6 blocks of level 0 that span
the same range are also included. The final proof is 10 blocks long (because some
blocks belong to multiple levels, but do not need to be repeated in the proof).

To compare two proofs π1 and π2 of this style, the verifier first finds the LCA
block b among them. He then chooses a level µ such that at least one of the provers
has provided m blocks of level µ after b and compares the count of distinct blocks
at that level. Once we introduce our full chain traversal notation, this comparison
can be expressed elegantly using the inequality

|π1{b:}↑µ | > |π2{b:}↑µ | .

Even though multiple levels have been included in the proof, the proofs only
take logarithmic size and are therefore succinct. The reason is that the number of
levels is logarithmic, while the number of blocks included in each level is constant
and approximately 2m per level, bringing the total to 2m log |C|.

1.3.3 Superlight Mining
Having created this construction, it is now possible to build superlight wallets that
can synchronize exponentially faster than standard SPV wallets. This still requires
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provers to be full nodes and have access to a complete chain. A natural question
that arises is whether it is possible to make a NIPoPoW verifier that has already
received a verified NIPoPoW take the place of a standard prover. The answer is yes,
because these proofs are deterministic and can be simply replayed by nodes that
have downloaded them. Additionally, once a NIPoPoW verifier has synchronized
with the network, any new block that is mined on top of the existing chain can also
be (fully) verified by them and adopted by them. Thus, even though the verifier does
not hold the whole chain, it can keep downloading and verifying new blocks from
the network. The next question is whether a verifier who holds a NIPoPoW π and
receives a series of new blocks b1, b2, · · · , bk from the network can convince another
verifier that these blocks now belong to the best chain. This is possible because
superblock-based NIPoPoWs have the online property: Consider a NIPoPoW π
created for a chain C. If b1 is created on top of C, then it is possible to evolve π into
a new NIPoPoW π1 which pertains to the chain C ∥ b1 without ever seeing C. This
is because the new NIPoPoW π1 only needs to contain (some) blocks from π as
well as b1 itself. This can be used to keep evolving NIPoPoWs as blocks are added,
always only keeping the latest among them. Previous blocks and old NIPoPoWs
can be garbage collected, allowing the node to function with a state of logarithmic
size.

The node that has synchronized using a NIPoPoW and only holds a NIPoPoW
can function as both a prover and a verifier and even be able to deal with cases
of temporary forks. In fact, the node can even mine on top of their NIPoPoW.
Because it holds the most recent block of the blockchain, it simply creates a new
candidate block that points to it and attempts to solve proof-of-work accordingly.
If he succeeds, he can broadcast the new block to the rest of the network and
update their local state by evolving their NIPoPoW in light of the new block. As
long as the majority of the mining power is honest, even all miners can upgrade
to this logarithmic protocol so that no one really has to ever save the whole chain.
The idea here is that the full history of transactions is not necessary to achieve
economic consensus (i.e., who holds how much money or how much money remains
unspent); what is needed is to be able to determine whether a new transaction
is valid, and for this it suffices to know the current state of the system, be it
unspent transaction outputs or account balances. This technique, which provides
exponential improvements in the size of state storage, we term logarithmic space
mining.

1.3.4 Proofs of Proof-of-Stake
Different techniques can be used to compress consensus state in proof-of-stake block-
chains. Unlike proof-of-work in which the work of a block is a stand-alone property
that can be verified by the verifier, the verification of the proof-of-stake signature
on a block requires the verifier to know the stake distribution of the current epoch
so as to be able to decide whether the key making the signature corresponds to a
correctly elected leader. However, having the verifier see the whole stake distribu-
tion would be inefficient. Instead, we propose a construction in which the verifier
only sees a small sample of the stake distribution per epoch. The protocol looks at
the leaders that were elected to mint blocks throughout the epoch, and assembles
a number of these leaders into a committee. Since the block leaders are selected in
a follow-the-satoshi fashion by respecting the evolving stake distribution, the com-
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mittee members are selected in this way too. It has been shown that committees
selected once per epoch in this fashion will have honest majority by count as long as
the underlying stake distribution that was used for the selection process has honest
majority by stake.

The light stake verifier looks at one such committee per epoch. For each epoch,
the committee signs off a certificate which attests to the election of a new committee
for the next epoch. The committee members themselves are full nodes who, in
the honest protocol, only sign off such certificates attesting to the correct new
committee. The verifier checks that the certificate has been signed by the majority
of an epoch’s commitee. By verifying these certificates, the verifier can ensure that
he holds a representative sample of keys for each epoch. These keys corresponding
to the committee of each epoch can then be used to sign statements alleging that
a transaction took place during their respective epoch. As the verifier knows the
committee for each epoch, they can verify these statements also.

While this construction has eliminated the need for the verifier to maintain the
whole stake distribution as it shifts from epoch to epoch, something that would
require the verifier to look at every transaction, it still requires the verifier to know
a committee for each epoch. These committees can be quite large to ensure that
the sampling of stake is representative. We optimize this need by introducing the
Ad-Hoc Threshold Multi-Signatures (ATMS) primitive, in which a whole committee
is represented by a single short public key. This public key, called the aggregate
public key, encodes in it all the public keys of all committee members, and its size is
comparable to a regular public key. There is one aggregate key per epoch. Further-
more, if multiple committee members create signatures on a message, these can be
aggregated into a single aggregate signature which has a small size, comparable to
a regular signature. These signature schemes are also treshold signatures: If a ma-
jority of the keys used to create the aggregate public key combine their signatures
into an aggregate signature, the aggregate signature will pass verification with the
corresponding public key in which more keys have been aggregated. On the other
hand, any aggregation of signatures by a minority number of signatories will not
verify. Lastly, the signature scheme is ad hoc, because each member of the com-
mittee can locally create their own signature without interactivity with the rest of
the members. The signatures can then be aggregated by any party, even outside of
the signatories themselves. Similarly, public keys can be generated locally without
interactivity and aggregated later by any party.

The evolution of committees from epoch to epoch is then represented by asking
the verifier to only hold a single aggregate key per epoch. For each transition
from epoch to epoch, the majority of the committee of the previous epoch sign
a certificate transitioning to the committee of the new epoch. The certificate’s
text contains the new aggregate public key. These signatures are combined into an
aggregate signature and can be verified by the aggregate public key of the previous
epoch. As such, the verifier simply sees one public key and one signature per epoch.
The aggregate public key of each epoch can also vouch for events that took place
during that epoch such as a particular transaction. For purposes of synchronization
of a light client, the committee corresponding to the current epoch can vouch for
any transactions occurring any time in the past, and the light verifier can use the
current aggregate key to verify any such claims. The amount of data needed to
download is therefore minuscule per epoch. However, as epochs evolve linearly with
time, the asymptotic complexity is still Θ(|C|), albeit with a very small constant.
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1.3.5 Sidechains
Consensus compression is useful for superlight clients and superlight mining. One of
its most interesting application beyond this pertains to cross-chain communication.
Given two chains, the source chain and the destination chain which are maintained
by independent mining populations, we want to have the destination chain react
to an event that took place in the source chain. The miners on one chain are
isolated from the other, and they do not connect to its network. However, users
interested in the cross-chain events can connect to both networks. Because users
can be adversarial, the destination chain miners cannot simply trust the users’ claim
that an event took place on the source chain – it needs to be verified.

Events that can be passed from blockchain to blockchain can be virtually any
predicate pertaining to a small amount of data such as a constant number of trans-
actions or blocks. In practice, these events can be, for example, about the fact
that a transaction with particular metadata took place on the source blockchain,
that a particular amount has been sent or received, that a particular account holds
a certain amount of balance at some point in time, that some transaction output
remains unspent, that a smart contract method was called with some particular
arguments, or that a smart contract’s state variables held certain values at some
point in time.

We create support for cross-chain communication for blockchain systems in
which the source blockchain can produce Non-Interactive Proofs of Proof-of-Work-
or-Stake. As discussed, these systems may need some backwards compatible up-
grades before they can be used as sources, such as introducing interlinks. On the
receiving side, we require the blockchain to either have native support for consuming
these Proofs of Proofs (and its miners to run a verifier), or to have smart contract
support. Smart contract support is sufficient because a compressed consensus ver-
ifier (such as a NIPoPoW or ATMS verifier) can be written in the code of a smart
contract.

The core idea of our sidechain construction is as follows. Whenever an event
takes place within the source blockchain, information about the event as and its
corresponding blockchain is compressed into a Proof of Proof. For proof-of-work
sources, these are NIPoPoWs; for proof-of-stake sources, these are evolving ATMS.
As the proof is a short string, it can be submitted to the destination blockchain for
verification. This verification can be done by the destination chain miners natively
(without ever connecting to the source blockchain), or by a smart contract. The
latter case is the more interesting one, because it allows blockchains that were never
designed to be interoperable to communicate. In this setting, the code for checking
the validity of the NIPoPoW as well as the code for their comparison is written into
smart contract format. This allows the smart contract running in one blockchain to
consume NIPoPoWs generated about other blockchains. In this case, the miners of
the smart blockchain simply execute the smart contract code as if it were any other
smart contract, without any regard for its semantics or knowledge that inter-chain
communication is taking place. Once the smart contract has verified the proof, it
may be able to take a decision immediately (for proof-of-stake sources), or it may
need to wait for a short period to allow for contesting proofs to appear (for proof-
of-work sources). In case a fraudulent NIPoPoW pertaining to a shorter chain is
submitted, a contesting proof allows any node monitoring both chains to make a
counter-claim, via a new NIPoPoW, claiming that the original proof was fraudulent.
The smart contract runs the NIPoPoW comparison algorithm and decides which
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of the two proofs is the legitimate one. To ensure users have incentives to submit
such proofs, a successful contestation is accompanied by a reward which is paid out
to the contester and is obtained by slashing a collateral deposited by the original
prover. In case no proofs of fraudulence are submitted, the collateral is returned to
the (honest) initial prover.

As we can have both proof-of-work and proof-of-stake sources as well as proof-
of-work and proof-of-stake destinations, this construction allows us to create com-
munication bridges between any combination of consensus mechanisms. If the in-
formation is passed only one-way, then the communication is unidirectional. This
application is still useful as a mechanism to bootstrap a new cryptocurrency from
an old one. We present one way of doing that by destroying money on the source
blockchain and proving that this happened by providing a relevant proof submitted
to the destination chain. On the other hand, nothing prevents two blockchains from
both functioning as a source and a destination for each other. This allows us to
build fully bidirectional communication channels between blockchains, giving rise
to full two-way pegs.

In a two-way peg, the bidirectional communication can be used to move a coin
from one blockchain to another while it retains its nature, decoupling the notion of
a blockchain from that of a cryptocurrency. The lifecycle of the coin is as follows.
Consider two blockchains A and B and an asset which is natively issued within
chain A. Two smart contracts are deployed for interoperability purposes, one on
chain A and one on chain B. Each of the two smart contracts records the address
of its counterpart. Initially, a coin exists in its native blockchain A. The coin is
locked into a special smart contract within the native blockchain, which ensures
that it cannot be further spent. At this stage, blockchain A functions as a source
blockchain for the communication protocol. The fact that the coin was locked is
proven using a Proof of Proof-of-Work or Stake. This proof is created by the user
that locked her coin. The proof is submitted to a smart contract which lives on
blockchain B. At this stage, blockchain B functions as a destination chain. The
receiving smart contract verifies the Proof of Proof-of-Work or Stake and waits to
ensure there is no contestation. At this point, the receiving smart contract can
be certain that the coin was locked into its counterpart which lives in chain A.
Note that the smart contract never directly connected to the network of chain A.
The receiving smart contract mints a new token coin within blockchain B, equal in
nominal value to the value of the locked coin on chain A. The token on chain B is
given the the public key that corresponds to the user who locked the initial coin on
chain A. That token can then be used for exchange within chain B like a regular
currency. However, it is dissimilar from the native currency of chain B (in fact,
chain B may not even have a native currency of its own, as we will see).

When any user who ends up holding the token within chain B decided to move
it back to chain A, the reverse process is initiated. Chain B now functions as a
source chain, while chain A functions as a destination chain. The token is sent
to the smart contract in chain B. The contract destroys the token. The user who
destroyed their token in chain B then creates a Proof of Proof of this fact. Again this
is a short string which can be submitted to the smart contract that lives on chain
A. The smart contract on chain A verifies the proof attesting to the destruction of
the token on chain B, and waits for potential contestation. At this point, the smart
contract on chain A can be certain that the token has been destroyed on chain B
and can now unlock the corresponding value in native currency that it currently
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holds. Because tokens appear on chain B only after they have been locked in the
smart contract of chain A, the smart contract in chain A will always have sufficient
balance to unlock to respond to any withdrawals.

Lastly, the process is voluntary and any users of A and B who do not wish to
use it do not have to participate or even know about it. Importantly, the miners of
the two chains can remain unaware that the cross-communication is taking place.
Additionally, chain A is firewalled from chain B. This means that a catastrophic
failure in chain B, such as an honest majority violation, does not propagate to chain
A beyond the amount of money that was locked in the cross-chain smart contract.
As such, any nodes who are not participating in the cross-chain protocol will incur
no financial losses from such a catastrophic failure.

1.3.6 Summary of Contributions
A summary of our contributions and their dependencies, with annotations indicating
where they are presented in this thesis, is visually illustrated in Figure 1.10.

In summary, in this thesis we solve the problem of consensus compression for all
decentralized blockchain consensus mechanisms. For proof-of-work, we introduce
the NIPoPoWs primitive (Chapter 3) and we give two superblock-based construc-
tions of succinct NIPoPoWs protocols in the Backbone model: First the charity
construction (Chapter 3), and second the distill construction (Chapter 4 and 5). In
the static synchronous model (Chapter 3), we prove our charity construction with
goodness secure against 1

2 adversaries, but succinct only in the optimistic setting.
Our charity construction without goodness as well as our distill construction are
both secure and succinct against 1

3 adversaries (Chapter 5). In the synchronous
variable model (Chapter 5), our distill construction is secure against a 1

3 adversary
as long as difficulty is non-decreasing. Our charity without goodness construction
is secure against a 1

3 adversary even if difficulty is not limited to non-decreasing.
Both are succinct as long as difficulty is not exponentially decreasing. Lastly, in the
∆-bounded delay setting (Chapter 5), both constructions are secure and succinct
under the same limitations, but only against a 1

4 adversary. We give concrete pa-
rameter recommendations and run experiments and simulations indicatively for the
charity construction of Chapter 3. For proof-of-stake, we construct the ATMs
primitive and give signature-based construction (Chapter 6). These are secure in
the Ouroboros model, but offer only constant improvements over full clients and
hence do not achieve asymptotic succinctness.

We make use of these primitives to build cross-chain transfer applications,
which give rise to interoperability among blockchains, allowing generic information
transfer among work/work, work/stake, and stake/stake chains. We give the def-
inition of what constitutes a secure sidechain protocol (Chapter 7) and put forth
a cross-chain protocol which we prove secure. Our protocols can work natively
or by leveraging smart contract functionality. We show how they can be utilized
to create one-way and two-way pegs and discuss several deployment mechanisms
which allow them to be deployed as soft forks or better. Our protocols can also be
used to build superlight clients. Lastly, we show that our proof-of-work protocols
specifically can be utilized to build logarithmic-space miners (Chapter 4), providing
exponential improvements over the state and communication complexity of existing
proof-of-work blockchain protocols.
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Figure 1.10: A roadmap of this thesis’ structure. Our underlying model is shown
above the double line. Our contributions are shown below the double line and
comprise consensus compression primitives (above the dashed line) and their appli-
cations (below the dashed line). The respective chapters are indicated next to each
topic.
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1.4 Related Work

1.4.1 Consensus Compression
Nakamoto’s original Bitcoin whitepaper [116] anticipated the rising costs of an ev-
ergrowing blockchain, and proposed a protocol for lightweight clients, called “Sim-
plified Payment Verification” (SPV). Unlike “full nodes” which process and validate
the entire blockchain (including all transactions and signatures), SPV clients only
process the proof-of-work chain and transactions directly pertaining to them. SPV
nodes only download the block headers (which in this thesis we denote C) of the
blockchain and leave out transactions. An SPV node who has downloaded the chain
with the most proof-of-work can validate the proof-of-work, as the headers are suf-
ficient to do this. When an SPV client receives a payment, it requests a Merkle
inclusion proof in order to confirm that the transaction is included in one of the
blocks whose header is already stored by the client. This is possible because the
block header contains a Merkle Tree Root of the transactions. This gives a signifi-
cant improvement in communication complexity, the amount of data that an SPV
node needs to download being 80|C| for 80-byte headers in Bitcoin. While today a
full node needs to download more than 250 GB of data, an SPV node only needs
to download 50 MB of data. However, as the size of the block has a constant upper
bound (currently about 1 MB), SPV constitutes a constant improvement over full
nodes. In particular, the amount of data that needs to be downloaded from the
network grows linearly in both the full node and the SPV node cases. They both
download Θ(|C|) data. Most widely used clients today, among others mobile wallets
based on BitcoinJ, implement SPV.

As an alternative to downloading all block headers at first startup, the SPV
client software could embed a hardcoded checkpoint; blocks prior to which are
ignored.2 Although this approach is very efficient, it introduces additional trust
assumptions on software maintainers.

The first attempt to compress consensus state to something sublinear without
additional trust assumptions was put forth in 2012 in a Bitcointalk forum post
by Andrew Miller in which he proposes what he calls the High-Value-Hash High-
way [115]. In that post, the idea of superblocks is introduced and intuition is given
about superchains that capture proof-of-work without presenting it. Albeit in-
complete, some first ideas are also discussed with regards to the interlink data
structure. In 2016, Aggelos Kiayias, Nikolaos Lamprou and Aikaterini-Panagiota
Stouka coined the term Proofs of Proof-of-Work and proposed a well-defined pro-
tocol leveraging superblocks in their paper Proofs of Proofs of Work with Sublinear
Complexity [83]. The paper shows that such protocols can be succinct and presents
a concrete protocol with complexity O(log(|C|)). That paper also properly intro-
duces the superblocks structure, which we make heavy use of in our work. Both
the highway forum post and the PoPoW paper have been important inspiration for
our work. These ideas form the basis for the creation of superlight clients.

The protocol defined in these works, the KLS protocol, has some significant
shortcomings. First, KLS is interactive. This means that multiple network messages
between the prover (a full node peer in the network) and the verifier (a superlight
node or client attempting to synchronize) are required in order for the superlight
node to arrive at a conclusion about which blockchain is the longest. In these

2See https://bitcoinj.github.io/speeding-up-chain-sync
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interactions, the superlight node communicates with multiple provers, at least one
of which is honest, and interrogates them by asking questions which are adapted
based on the other proofs that they have received. After sufficient interrogation, the
verifier can draw the correct conclusion. The number of rounds in this interrogation
process can grow to be O(log(|C|)). This has impact on the performance of the
superlight client, but also limits the applicability of the scheme when it comes to
applications such as cross-chain certification and logspace mining. In this thesis, our
protocols improve upon theirs to achieve non-interactivity (see Chapter 3), enabling
cross-chain and logspace mining applications in addition to superlight clients (see
Chapter 4).

Secondly, while the KLS protocol allows a superlight client to deduce that most
recent k blocks (where k denotes a configurable constant common prefix parameter)
of a chain which would be admitted by an honest full node, it gives no further
ability to query the chain for information buried deep within it. In particular,
it does not offer the ability to prove that a transaction took place in the past,
unless k is set to be large. In that case, if k ∈ Ω(|C|), the protocol ceases to
be succinct. Therefore, the main application of a superlight client, which involves
verifying whether a transaction took place, is not possible by the KLS protocol,
except in limited circumstances. As such, it constitutes a suffix proof protocol, but
falls short of constructing infix proofs. In this thesis, we generalize their construction
to allow for the deduction of a quite generic class of predicates about the chain,
including old transaction confirmation (see Chapter 3). Intuitively, we extend their
work to allow any fact about the blockchain which depends on a polylogarithmic
number of blocks to be decided.

Lastly, the security treatment of the KLS construction is incorrect. More specif-
ically, due to a subtle but critical mistake in the proof of the security theorem,
their conclusion that their protocol achieves security for a 1/2 adversary with over-
whelming probability is false. In fact, there exists a minority adversary which is
able to break security with overwhelming probability. These issues are explored in
this thesis in our development of superchain quality. We subsequently use this prop-
erty to both build an attack which we prove works with overwhelming probability
against their scheme, as well as to create a scheme which bypasses the issue for a
1/2 adversary. Their initial construction can be proven secure against a 1/3 adver-
sary, albeit using a different proof strategy (leveraging our results in Chapter 5).
We also remark that our schemes are succinct against all possible adversaries and
are not limited to optimistic succinctness.

In addition to treating the above shortcomings, our results generalize in the
more refined model of ∆-bounded delay and variable difficulty. We also provide ex-
perimental results, simulations, concrete security parameters, and smooth upgrade
recommendations.

The practical feasibility of superblock-based constructions and their empirical
analysis has been studied by a series of other works [75, 77].

Our work has inspired a vibrant and challenging line of research by other groups.
Following our NIPoPoW paradigm and subchains approach, a different construction
named FlyClient [32] allows the succinct and secure construction of proofs. Instead
of including an interlink vector which just contains links to the most recent super-
block of every level, they make use of Merkle Mountain Ranges to reference the
whole previous blockchain from every block. This enables them to create a prob-
abilistic proof which is made non-interactive using the Fiat–Shamir [55] heuristic.
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The structure of their scheme is inspired by similar probabilistic challenge-response
protocols that exist in the zero knowledge setting [134]. Their protocol is elegant
and simple and has seen some adoption in practice. Additionally, they propose an
extension to Merkle Mountain Ranges, namely Segment Merkle Mountain Ranges
which are useful for variable difficulty constructions (a different approach to ours).
While we are convinced their protocols are secure in principle, contrary to our work
in this thesis, their security analysis so far is only done in expectation and not with
high probability. A more complete analysis is pending. Lastly, because the con-
struction of their NIPoPoWs is not superblock-based, but probabilistic, this means
that these proofs are not online. Therefore, if a full node has a proof and mines
a block on top of it, they cannot create a new proof without holding the whole
chain. This limitation is inherent in their construction and means that applications
such as logspace mining which rely on online NIPoPoWs are not possible using their
protocol.

A different approach to our superblock-based constructions stems from leverag-
ing SNARKs and their recursive composition [24, 25] as a way to compress to poly-
logarithmic size and update a given blockchain. One such construction is Coda [110].
This construction allows the compression of both proof-of-work and proof-of-stake
consensus. A significant advantage and distinguishing feature of our approach is
however the fact that it does not rely on a common reference string as SNARK-based
protocols require, and so does not require a trusted setup. Moreover, no additional
assumptions are introduced beyond those necessary for the security of the Bitcoin
blockchain in the random oracle model. Lastly, we remark that our approach is
simpler in its construction, as it makes use of only proof-of-work and hash primi-
tives. We believe this is a great advantage for protocols that will be implemented
in practice. Additionally, it enables a wider audience to audit the implementa-
tion and has a smaller attack surface. We note, however, that our proof-of-stake
construction (in Chapter 6) is Ω(|C|), while they achieve the exponentially better
result of O(log(|C|)). We only achieve a comparable result in the proof-of-work
case. However, it is unclear whether the Coda construction is practical. Although
the proofs are indeed succinct, the constant factors in their sizes have not been
calculated. As with many zero knowledge schemes, they can very quickly turn out
to be prohibitively large. The practicality of this scheme remains to be illustrated.

Our proof-of-stake compression scheme makes heavy use of the Ad-Hoc Thresh-
old Multisignatures primitive, which we introduce in this work. Threshold multi-
signatures were considered before [122], but without the ad-hoc characteristic we
consider here.

Our work focuses on compressing consensus data, i.e., the block headers ex-
changed and stored. There has been significant work in compressing application
data in a way that maintains consensus. Such examples include moving trans-
actions and smart contract execution off-chain in Layer 2 constructions such as
payment channels [126, 86, 10, 11] and networks, rollups of the optimistic [142] or
zero-knowledge [20] kind, and sidechains [125, 125, 90, 82]. Other systems allow
(quite successfully) compressing multiple transactions into fewer or smaller, such
as in the case of EDRAX [38], bulletproofs [31], or Mimblewimble [124]. These
systems do not compress consensus state; all block headers must still be sent and
stored, even though the actual application data is reduced.
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1.4.2 Interoperability
Blockchain interoperability is a problem that has attracted a lot of interest in the
space. Since 2011, the Namecoin [105] blockchain used the concept ofmerged mining
in which proof-of-work is performed simultaneously in two different chains. While
this does not allow the exchange of blockchain application data (such as trans-
actions), it constitutes the first instance of a chain co-existing with another in a
symbiotic relationship.

Proposals to allow blockchains to exchange application layer data were first
discussed in 2014 in the work Enabling Blockchain Innovations with Pegged Side-
chains [12]. This also constitutes the first occurrence of the term sidechain. While
they do not propose a concrete mechanism which allows for decentralized blockchain
communication, they describe the need for interoperability among blockchains. An
interesting observation in the work appears in Appendix B in which the authors dis-
cuss the need for secure compact Proofs of Proof-of-Work (which they call compact
DMMS) as a prerequisite for the construction of secure sidechains. The need for a
Proofs of Proof-of-Work construction as a prerequisite for sidechains was pointed
out earlier that year by Friedenbach in the Bitcoin Development mailing list [57].
Both of these mentions refer to superblock-based constructions. These references
highlight that our work in this thesis solves a long-standing open problem with a
multitude of previously known applications. A significant contribution of their work
is the introduction of the firewall property, which we formalize in this thesis.

These works explore one particular application of sidechains, the ability of a
sidechain to offer smooth software upgrades. They propose that features can be
trialed on a sidechain prior to being adopted in the main chain. Their definition of
a sidechain is limited to being a child chain of a particular parent chain; as such,
the sidechain’s lifecycle fully depends on that of its parent. In our work, in addi-
tion to providing a concrete implementation of cross-chain proofs which are needed
for parent-child-style sidechains, we generalize the notion of sidechains to allow
pre-existing and stand alone blockchains to communicate as well (see Chapter 7).
Additionally, their exchange of information is limited to the two-way pegged trans-
fer of value. Our construction allows conveying any information, not just transfers
of value. This distinguishing property becomes more pronounced when applied to
smart contract blockchains in which more generic information of interest can ap-
pear. In our work, a blockchain is a sidechain of another chain if it can generically
react to events on that chain, and so the relationship can be symmetric. The events
which we allow reacting to can be any of the generic predicates that lend themselves
to succinct proofs-of-work or stake.

The first practical implementation of cross-chain information transfer involves
the use of atomic swaps. Atomic swaps allow the exchange of two assets between a
party on one chain and a counter-party on another chain atomically. Atomicity is
achieved through Hash Time Locked Contracts [126] and ensures that either both
assets are exchanged, or neither. This makes atomic swaps useful for decentralized
cross-chain trading and makes decentralized exchanges (DEXes) possible. Atomic
swaps were first introduced by Tier Nolan [118]. Multi-asset atomic swaps were
studied by Herlihy [68]. Contrary to atomic swaps, our cross-chain communication
protocols allow the generic transfer of information and are not limited to asset
swapping. Additionally, we do not require a counter-party to trade with.

One construction which allows the generic transfer of information between chains
without additional trust assumptions is called BTCRelay [41]. The premise is to
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copy all block headers of one chain into the other using a smart contract. While
secure, this structure is not succinct (it is Θ(|C|)). It has been implemented as a
smart contract in production which allows the transfer of information from Bitcoin
to Ethereum.

Drivechains [141, 102] and rootstock are sidechain proposals which require min-
ers of both chains to be aware of both networks. This follows our definition of direct
observation (Chapter 7). While challenging from an engineering point of view, mu-
tual direct observation makes the problem theoretically trivial. In practice, mutual
direct observation means that deploying these sidechain schemes on stand-alone
chains would require modifying their miners and full nodes to connect to multiple
networks, which would be unfeasible. In our scheme, miners remain agnostic to the
existence of other chains and connect only to one network.

Plasma [125] (of which Plasma Cash [93] is one instance) creates a child sidechain
which is under the control of a centralized custodian account. The custodian is
responsible for creating blocks on the sidechain. The custodian commits his blocks
once every epoch to the parent chain, which implements a decentralized consensus
mechanism. While the custodian is a centralized entitity, it is not trusted with
security, as the construction allows the participants who hold money on the child
sidechain to abandon ship in case foul play is detected. Foul play includes any
violation of common prefix on the child sidechain; this means that participants must
wait for the child chain to commit to the parent chain in order to trust that their
transaction has been confirmed. Foul play also includes any violation of liveness
in which the custodian fails to create blocks. In the latter case, the parent chain
allows the withdrawal of money from the stale child chain. One shortcoming of
the scheme is that the commitments between the child chain and the parent chain
grow linear in time. However, we believe this scheme is particularly interesting and
practical, as linear cross-communication will always be necessary between chains
that have active cross-chain activity. While this mechanism cannot connect stand-
alone decentralized blockchains, it can be used to offload some of the burden from
an overloaded parent chain, assisting in scalability.

Polkadot [152], Tendermint, Cosmos [30], Liquid [47] and Interledger [144] also
build cross-chain transfers. Their validation relies on a trusted committees, federa-
tions or is left unspecified. None of the aforementioned constructions include proofs
of security. Other related work includes XCLAIM [157], PeaceRelay, COMIT [70],
NOCUST [81] and Dogethereum [143]. In all cases, there is a lack of a formal
security model and analysis, a gap we aim to fill here.
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Chapter 2

Background

The cryptographic treatment has three core characteristics [103].

1. Formal definitions play a central role. They specify the desirable properties
of our protocols. As we will see, these can often be quite tricky to develop.
One such example is the definition of pegging security in Chapter 7.

2. Clearly articulated assumptions allow us to understand the limitations of
our protocols. Our protocols never work unconditionally, and we must restrict
our model to obtain security. One such example is the computing power of
the adversary. In the case of Chapter 3, we can withstand a 1/3 adversary,
but the extended model of Chapter 5 can only withstand a 1/4 adversary.

3. Rigorous proofs of security give us the guarantee that our protocols are se-
cure, as long as our assumptions hold. Instead of employing ad hoc arguments,
the proofs are mathematical theorems employing computational reductions,
and they assert that the protocols are secure for all adversaries.

This chapter gives an overview of prerequisites upon which we build our proto-
cols. Blockchain science is a new field. As such, many of the elements we employ
here are folklore knowledge in the community, and some of them have never been
written down precisely before. Thus, this chapter may be of independent inter-
est as reference. Two interesting examples are our own security proof for Merkle
Trees, as well as an explicit description of the static difficulty, variable difficulty,
synchronous, and ∆-bounded delay environments in the form of pseudocode, which
has previously only appeared in imprecise textual descriptions.

2.1 Notation
We use standard mathematical notation throughout this work. We define all the
non-standard or unusual notation in this section. We use standard cryptographic
notation, which is also introduced here for reference. The reader unfamiliar with
this notation can consult some reference book in the subject such as [103] for a
more complete treatment.

Given a distribution M, we denote by m ← M the experiment by which the
random variable m is chosen according to the distributionM. Given a finite set M ,
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we use U(M) to denote the uniform distribution which assigns probability 1/2|M |

to each element m ∈ M . We will use m
$← M to denote the experiment in which

m is sampled from U(M).
As a shorthand for probabilities and to avoid excessive subscripting, we will

write the experimental set up (such as the sampling of random variables) within
the Pr[·] prior to the predicate of interest and separated by ; . For example, Pr[x←
D1, y ← D2;x + y = 1] denotes the experiment of independently sampling two
random variables, x and y, from the distributions D1 and D2 respectively, summing
their values, and observing whether their sum is equal to 1.

2.1.1 Asymptotic probabilistic security

Following the extended Church–Turing definition, we consider the class of prob-
lems in P to be easy, and we call hard those which are not easy [137]. We will
talk about honest parties, Turing Machines [147] which run our code, and the ad-
versary, denoted A, which is an arbitrary Turing Machine that can run any code.
It is assumed that all honest parties and the adversary have polynomial available
time. Both the honest parties and the adversary have access to true randomness
and are thus probabilistic Turing Machines. The shorthand PPT is used to denote
a probabilistic polynomial-time Turing machine.

Our theorems are by computational reduction, in which we show that bad events
happen only with negligible probability in some security parameter. We use λ ∈ N
to denote this security parameter. This parameter allows all our cryptographic
primitives to be instantiated with the required level of security; for example, it
provides the number of bits in the output of our hash function.

Definition 1 (Negligible). A function f : N −→ R+ is negligible if for all k ∈ N it
holds that f ∈ O( 1

λk ).

We will use the notation negl to denote any negligible function.

Definition 2 (Overwhelming). A function f : N −→ R+ is overwhelming if it can
be written as f(n) = 1− negl(n) for some negligible function negl.

We will define the security of various cryptographic protocols by making use
of challenger-adversary games in which the challenger is a known Turing Machine
defined by us, but the adversary is an arbitrary Turing Machine. Herein lies the
beauty of cryptography as a science; it allows us to create protocols which we prove
secure against any adversary, even those we cannot conceive. A protocol will be
considered secure if no PPT adversary can win the respective game, except with
negligible probability.

2.1.2 Sequences

We use [n] to denote the set of natural numbers from 0 up to and including n.
We also use [M] to denote the support of a distributionM; the distinction between
the two notations will be clear from the context. We use ϵ to denote the empty
sequence (or empty string). We will later also use ϵ ∈ R+ to denote deviations from
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expectation, but it will be clear from the context whether this is a string or a real
number. We write one sequence next to another to denote string concatenation.
Likewise, we concatenate sequences to symbols by juxtaposition. If for clarity this
needs to be made explicit, we will use the symbol ∥ for concatenation. We make the
implicit assumption that concatenation encodes values into a string unambiguously,
for example by separating them by a special character that never appears in the
operands. This allows them to be uniquely extracted again.

Our sequences are indexed starting at 0. Given a sequence C, we use
|C| to denote its length. We use Python notation to denote sequence addressing.
For i ∈ [n − 1], we denote the ith element from the beginning as C[i]. The first
element of the sequence is thus C[0]. For i ∈ [n] \ {0}, we denote the ith element
from the end as C[−i]. The last element of the sequence is thus C[−1]. We call
this the tip of the sequence. Given i ∈ Z, j ∈ Z with i ≤ j, we denote C[i:j] the
subsequence from i (inclusive) to j (exclusive), that is the sequence which contains
exactly the elements C[i],C[i+ 1], . . . ,C[j − 1]. If i > j, then by convention we set
C[i:j] = ϵ. We allow this range notation to be used with negative indices as well,
indicating ranges starting or ending (or both) in indices considered from the end of
the sequence, hence allowing for C[−i:j],C[i: − j], and C[−i: − j]. The left end of
a range can omitted if it is i = 0. The right end of a range can be omitted if it is
j = |C|. For example, C[: −k] is the sequence C with the last k elements excluded.
In this example, if |C| < k, then C[: −k] = ϵ. Given A,Z ∈ C such that A and Z
exist only once in C, we denote by C{A:Z} the subsequence of C starting from A
(inclusive) and ending in Z (exclusive). If A = C[0], it can be omitted. Omitting Z
denotes the sequence starting with A and containing all subsequent elements until
the end of the sequence. We use the notation A ⪯ B to indicate that sequence A is
a prefix of B, namely that B[:|A|] = A.

We will reuse some set notation when talking about sequences1. Given a
sequence A, we write x ∈ A to mean ∃s1, s2 : A = s1 ∥x ∥ s2. We write A ⊆ B to
mean that A is a subsequence of B, that is it has all the same elements in the same
order, but it could have more intertwined. More precisely, ϵ ⊆ B is true; and if
A ⊆ B is true, then x ∥A ⊆ x ∥B as well as A ⊆ x ∥B are both true. We will use
set builder notation to filter sequences. Namely, {x ∈ A : p(x)} is interpreted as ϵ
if A = ϵ; otherwise, if A is non-empty and we have A = uB for some element u and
sequence B, then {x ∈ A : p(x)} = p(u) ∥ {x ∈ B : p(x)}. We use A ∩ B to mean
the sequence {x ∈ A : x ∈ B}. Because in all of its uses throughout this work A
and B will have their shared elements appear in the same order, this operator will
be symmetric in our case.

2.2 Mathematical Background
The following well-known theorem is due to Rubin [40, 39]. It will help us derive
negligible bounds for probabilities of bad events.

1Formally speaking, in the traditional build-up of mathematical foundations using axiomatic set
theory, sequences are defined as sets, and this would be deemed somewhat abusive in light of the
following fact. If A is a sequence and x is a candidate element, x ∈ A could have a different truth value
when A is interpreted as set and when A is interpreted as a sequence. For this reason, the symbols
∈,⊆ and so on, when referring to sequences (as is made clear in the surrounding text), are meant to be
read as predicates ∈′,⊆′ and so on different from their set-theoretic counterparts. For conciseness, and
because it does not affect clarity in our treatment, we will not mark them with the prime symbol.
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Theorem 1 (Chernoff Bounds). Let {Xi : i ∈ [n]} be mutually independent Boolean
random variables such that for all i ∈ [n] it holds that Pr[Xi = 1] = p. Let
X =

∑n
i=1 Xi and µ = E[X] = pn. Then, for all δ ∈ (0, 1] it holds that:

Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ

2
) and Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ

3
)

A similar tail bound can be stated [109, Theorem 3.15] for martingales.

Theorem 2 (Martingale Tail). Let X0, X1, . . . be a martingale with respect to the
sequence Y0, Y1, . . . . For n ≥ 0, let

V =

n∑
i=1

var(Xi −Xi−1|Y0, . . . , Yi−1) and b = max
1≤i≤n

sup(Xi −Xi−1|Y0, . . . , Yi−1),

where sup is taken over all possible assignments to Y0, . . . , Yi−1. Then, for any
t, v ≥ 0,

Pr
[
(Xn ≥ X0 + t) ∧ (V ≤ v)

]
≤ exp

{
− t2

2v + 2bt/3

}
.

2.3 Cryptographic Primitives
We now overview the cryptographic primitives we will make use of. In particular,
cryptographically secure hash functions, public-key signatures, and proof-of-work.
This section is a review. For a full treatment, refer to any introductory textbook
in the subject [103, 80, 62, 63].

2.3.1 Hash Functions
A hash function Hs :M −→ {0, 1}λ is a function parameterized by the security
parameter λ which takes any string from the distribution of input strings M and
outputs a string of constant size λ. To capture the fact that the hash function
behaves like a randomly chosen function, the hash function is instantiated using a
key-generating function Gen(1λ) which generates a hash key s. The hash function
itself is then Hs, a different function for each value of the key s. As hash functions
are the building blocks and workhoses of cryptography, other protocols are designed
on top of them that make use of them. We will do so in this work. In practice,
the key s is assumed to have been generated by the designers of the higher level
protocol that makes use of the hash function and is typically fixed and publicly
known. The hash protocol is the tuple Π = (Gen,H).

Practical hash functions allow us to map any message x of arbitrary length
x ∈ {0, 1}∗ to a fixed-length bitstring {0, 1}λ. Hash functions are easy to compute,
but hard to invert. In applications, it is assumed that a hash uniquely represents
its preimage (it is binding) and that the preimage cannot be discovered from the
image given sufficient entropy (it is hiding). This makes them ideal for constructing
commitment schemes.

These intuitive ideas are captured by the difficulty of finding collisions in hash
functions. This is formalized in the next definition.
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Algorithm 1 The collision-finding experiment hash-collisionΠ,A.
1: function hash-collisionΠ,A(λ)
2: s← Gen(1λ)
3: x1, x2 ← A(s)
4: if Hs(x1) = Hs(x2) ∧ x1 ̸= x2 then
5: return true
6: end if
7: return false
8: end function

Algorithm 2 The preimage-finding experiment hash-preimageΠ,A.
1: function hash-preimageΠ,A(λ)
2: s← Gen(1λ)
3: x←M
4: x′ ← A(s,Hs(x))
5: if Hs(x) = Hs(x′) then
6: return true
7: end if
8: return false
9: end function

Definition 3 (Collision resistance). A hash function H : {0, 1}∗ −→ {0, 1}λ is
called collision resistant if for all PPT adversaries A there is a negligible function
negl such that

Pr[hash-collisionΠ,A = 1] ≤ negl(λ) .

A weaker notion of security mandates that no adversary can reverse the function
(pre-image resistance) or that no adversary can find a second value giving the same
output as a given random value. The two cryptographic games and definitions are
illustrated in Algorithms 2 and 3.

Definition 4 (Pre-image resistance). A hash function H : {0, 1}∗ −→ {0, 1}λ is
called pre-image resistant if for all PPT adversaries A there is a negligible function
negl such that

Pr[hash-preimageΠ,A = 1] ≤ negl(λ) .

Definition 5 (Second pre-image resistance). A hash function H : {0, 1}∗ −→
{0, 1}λ is called second pre-image resistant if for all PPT adversaries A there is a
negligible function negl such that

Pr[hash-second-preimageΠ,A = 1] ≤ negl(λ) .
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Algorithm 3 The second-preimage-finding experiment hash-second-preimageΠ,A.
1: function hash-second-preimageΠ,A(λ)
2: s← Gen(1λ)
3: x←M
4: x′ ← A(s, x)
5: if Hs(x) = Hs(x′) ∧ x ̸= x′ then
6: return true
7: end if
8: return false
9: end function

A hash function that is collision-resistant is also pre-image resistant; addition-
ally, if it is pre-image resistant, then it must also be second pre-image resistant, as
long as it provides sufficient compression [131].

Protocols deployed in practice make use of fixed hash functions; that is, hash
functions with a fixed security parameter and a fixed key. In Bitcoin, the hash
function SHA256 [119] is used for both commitments and proof-of-work. Its domain
and range are SHA256 : {0, 1}∗ −→ {0, 1}256. In Ethereum, the hash function
keccak256 [23], a variant of SHA3, is used for commitments. Its domain and range
are keccak256 : {0, 1}∗ −→ {0, 1}256. The function used for proof-of-work is a
variant of this.

2.3.2 Signatures
A digital signature allows parties to authenticate the origin of a message as well as
its integrity [103]. If Alice signs a message m, she generates a signature σ which
is uniquely associated with that message. That signature can then only be used to
verify that particular message. In a secure signature scheme, an adversary cannot
forge signatures that correctly verify for messages that have not been signed by the
honest party.

Signing and verification are two separate tasks which are asymmetric. Only the
authorized party can sign a message, but anyone can verify the signature. This is
achieved by having each party generate their own public-private key pair (pk, sk) in
which pk is the public key and sk is the secret key. Signatures are then generated
using the secret (or signing) key sk and verified using the public (or verification)
key sk. A key pair is generated using the polynomial-time key generation algorithm
(pk, sk) ← Gen(1λ). A signature is generated by invoking the polynomial-time
signing algorithm σ = Sig(sk,m). Verification is done by checking whether the
verification algorithm Ver(pk,m, σ) returns true or false. The signature scheme Π
then is defined as the tuple Π = (Gen, Sig,Ver).

Signature schemes must be correct.

Definition 6 (Signature correctness). A signature scheme is correct if there is a
negligible function negl such that for all messages m ∈ {0, 1}∗ it holds that

Pr[(pk, sk)← Gen(1λ);Ver(pk,m, Sig(sk,m)) = false] < negl(λ) .
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Algorithm 4 The forgery experiment sig-forgeΠ,A.
1: function sig-forgeΠ,A(λ)
2: (pk, sk)← Gen(1λ)
3: M ← ∅
4: function SigO(m)
5: M ←M ∪ {m}
6: return Sigsk(m)
7: end function
8: (m,σ)← ASigO(·)(pk)
9: if V er(pk,m, σ) ∧m ̸∈M then
10: return true
11: end if
12: return false
13: end function

A secure signature scheme requires that no adversary is able to forge signatures.
This is captured in the game-based definition of Algorithm 4. In this game, the
challenger first generates a public/private key pair by invoking Gen(1λ). Subse-
quently, the challenger asks the adversary A to attempt to find a signature forgery.
The adversary is allowed to ask the challenger to have any messages signed by in-
voking the SigO oracle with messages of her choice. The adversary is allowed to
make multiple adaptive queries to the oracle. When the adversary is ready, she
presents a message m, which she must not have requested from the oracle SigO and
a signature σ. The adversary is successful if the signature verifies.

Definition 7 (Security). A signature scheme Π = (Gen, Sig,Ver) is secure if for all
PPT adversaries A there is a negligible function negl such that

Pr[sig-forgeΠ,A(λ)] < negl(λ) .

There are multiple ways to construct a secure signature scheme. Our signature
schemes of interest make use of the discrete logarithm problem in a group. In such
a construction, a cyclic group G with order close to 2λ and a generator G ∈ G are
fixed initially. A public key corresponds to an element A ∈ G of the group, while
the corresponding private key a ∈ Z|G| is the order of A with respect to G, that
is A = aG. The keys are generated by first choosing a private key a uniformly at
random and then computing its corresponding public key. The public key can be
computed quickly from the private key using multiplication by doubling [135], but
it is believed that the inverse problem is hard.

The problem of finding a from A is made formal in Algorithm 5. Here, we
assume that an efficient algorithm G can be used to pick a suitable group of the
appropriate order and output its description. Furthermore, we assume the group
operator is efficiently computable. The challenger generates a group and chooses
one of its elements at random. The adversary is then asked to find the discrete
logarithm of that element.
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Algorithm 5 The DLOG problem.
1: function DLOGG,A(λ)
2: (G, G, |G|)← G(1λ)
3: a

$← Z|G|
4: A← aG
5: a∗ ← A(G, G, |G|, A)
6: return a∗G = A
7: end function

Definition 8 (Discrete Logarithm Problem). The discrete logarithm problem is
hard in the family of groups {G(1λ)}λ∈N if for all PPT adversaries A there is a
negligible function negl such that

Pr[DLOGG,A(λ) = 1] < negl(λ) .

The particular instantiation of signature schemes in the context of cryptocurren-
cies makes use of elliptic curves [91] in which the discrete logarithm problem is be-
lieved to be hard. More specifically, Bitcoin and Ethereum both use the secp256k1
curve [128].

Remark 1. We remark that, perhaps contrary to popular belief, blockchain protocols
do not depend at all on encryption primitives. Therefore, we choose not to treat
encryption at all in the present work.

2.4 Authenticated Data Structures

2.4.1 Merkle Trees
Consider a set S = {s1, s2, · · · , sn} of strings si ∈ {0, 1}∗. At some initial time,
this set is compressed into a root string s which is short (|s| = λ). This compressed
string is produced honestly and is given to a party called the verifier. Given this
short trusted root string, the verifier receives claims from untrusted provers which
claim that a certain piece of data e existed in S. The verifier’s job is to decide
whether such claims are truthful or fraudulent.

This protocol is an authenticated set. It consists of four algorithms G, compress,
prove, verify. At the beginning of the execution, G(1λ) is invoked to initialize the
protocol parameters. These parameters can be shared among multiple invocations
of the protocol. As these parameters are fixed by the protocol in its concrete
implementations, we will make them implicit from now on. A set S is compressed
by invoking compress(S) which produces the root s. When an honest prover wishes
to prove that some element e exists in S, they produce an inclusion proof π =
prove(S, e). When the verifier receives an element e together with an inclusion
proof π, they check its veracity by invoking verify(π, e, s), which returns true or
false.

Authenticated set protocols must be correct. This means that honest executions
should always work.
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Algorithm 6 The authenticated data structure challenger.
1: function AUTHΠ,A(λ)
2: (S, e, π)← A(1λ)
3: return e ̸∈ S ∧ verify(compress(S), e, π)
4: end function

Definition 9 (Correctness). Consider an authenticated set protocol Π = (compress,
prove, verify). We say that Π is correct if

∀S : ∀e ∈ S : verify(prove(S, e), e, compress(S)) .

Such protocols are useful when s and π are short.

Definition 10 (Succinctness). Consider an authenticated set protocol Π = (compress,
prove, verify). We say that Π is succinct if for all S it holds that

|compress(S)| ∈ O(polylog(|S|)) ∧ ∀e ∈ S : |prove(S, e)| ∈ O(polylog(|S|)) .

In the protocols we will explore, we will have |s| = λ ∈ O(1) and π ∈ O(log(|S|)).
Furthermore, |S| will be polynomial in λ.

An authenticated set protocol is secure if no adversary can convince a verifier
about the inclusion of an element which is not in the set. This is made formal in
the game illustrated in Algorithm 6.

Definition 11 (Security). An authenticated set protocol Π = (compress, prove,
verify) is secure if for all PPT adversaries A there is a negligible function negl such
that

Pr[AUTHΠ,A(λ)] < negl(λ) .

A construction that solves this problem which is used extensively in blockchain
protocols is the Merkle Tree [112]. This construction is illustrated in Algorithm 7.
It is parameterized by a hash function H. The construction presented works for |S|
equal to a power of 2.

It treats S as a sequence and organizes it into a complete binary tree Z using the
heapify routine (for reference, see Figure 1.3 in Chapter 1). The routine places the
hashes of the elements of S on the leaves of Z by storing them at locations Z[|S|:].
The value of each internal node is the hash of the concatenation of the values of its
children. The compress function returns the value of the root which resides at Z[1].
To create a proof π, the prove routine takes an index of an element i and finds its
position in the binary tree, namely the leaf stored at Z[|S| + i]. It then traverses
the path from that leaf up to the root, maintaining the index of the current node
in the variable i. In every iteration, it includes a bit indicating whether the current
node is a left child (b = 0) or a right child (b = 1). For each node, it includes the
value Z[i ⊕ 1] of the node’s sibling, which has index i ⊕ 1. To verify a proof, the
verifier successively hashes the element whose inclusion is proven with the hashes
h of the siblings provided in the proof π on the correct side indicated by b. In the
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end, it checks whether it has arrived at the trusted root s and this determines the
result of the verification.

Correctness is achieved because the hash function is deterministic and verify
applies hashes in the same manner as heapify does. Succinctness follows because
|s| = λ and, furthermore, the tree contains 2|S| − 1 elements so the height of the
tree is Θ(log(|S|)), making |π| ∈ Θ(log(|S|)).

The construction prefixes the value of each tree node with an indicator string
marking it as a hash (“h:”). On the contrary, each of the elements of S is marked as
content by prefixing it with a different indicator (“c:”) prior to compressing. The
verifier then begins by marking the claimed value as content by prefixing it with a
“c:”, in which case it can be certain there will be no confusion with a hash. This
ensures that the adversary cannot claim inclusion of internal nodes as leafs.

Remark 2 (Length of a Merkle Tree). Instead of marking every node as a hash
or content node, the compress function can also be made to return the count |S|
in addition to s. In that case, the verifier first asserts that |π| = log |S| before
proceeding with verification. The compressed string has length Θ(log log |S|), but
each proof is smaller by a constant factor. While this simplifies the security proof,
most blockchain protocols require that |s| ∈ Θ(1) and so we adopt this formulation
here.

Security follows by a direct computational reduction from the collision resistance
of H. We give a novel version of this proof here2.

2The proof that appears in Modern Cryptography [103] shows something weaker: that a Merkle Tree
is a collision resistant hash function. Dowling et al.[50] show in a different style of proof that collision
resistance of the root implies path consistency on the leaves.
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Algorithm 7 The Merkle Tree construction for |S| = 2k for some k.
1: function heapifyH(S)
2: for i← 0 to |S| − 1 do ▷ Fill in the tree leaves
3: Z[|S|+ i]← “h:” ∥H(“c:” ∥S[i])
4: end for
5: for i← |S| − 1 down to 1 do ▷ Fill in the tree internal nodes
6: Z[i]← “h:” ∥H(Z[2i] ∥Z[2i+ 1])
7: end for
8: return Z
9: end function
10: function compressH(S)
11: return heapifyH(S)[1]
12: end function
13: function proveH(S, i)
14: Z ← heapifyH(S)
15: i← |S|+ i
16: π ← [ ]
17: while i > 1 do
18: b← i mod 2
19: π ← π ∥ (b, Z[i⊕ 1])
20: i← ⌊i/2⌋
21: end while
22: return π
23: end function
24: function verifyH(π, e, s)
25: e← “h:” ∥H(“c:” ∥ e)
26: for (b, h) ∈ π do
27: if b then
28: e← “h:” ∥H(e ∥h)
29: else
30: e← “h:” ∥H(h ∥ e)
31: end if
32: end for
33: return e = s
34: end function

Theorem 3 (Security). Let H be a collision resistant hash function. The Merkle
Tree construction of Algorithm 7 parameterized by H is a secure authenticated set
protocol for sets of size |S| = 2k.

Proof. Consider an arbitrary adversary A against AUTH. We construct a collision
resistance adversary A∗ for the hash function H. The adversary A∗ invokes A and
obtains a proof π, an element e and a set S. The adversary A∗ checks that this
proof is fraudulent by ensuring that it passes verify and that e ̸∈ S (if not, then A∗
aborts). This proof implicitly encodes a position i in the tree, namely the position
expressed by the binary number obtained by concatenating all the bits b in π.

First consider the case |π| = log |S|. The adversary A∗ checks whether H(e) =
H(Si). If so, it returns the pair (e, Si) as a collision. Otherwise it proceeds to find
a collision as follows.
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Real tree Z

Z[1]

Z[⌊(|S| + i) / 2k + 1⌋]

Z[⌊(|S| + i) / 2k⌋]

Z[⌊(|S| + i) / 2k⌋ + 1]

Z[|S| + i]

Verifier tree path e

hlog|S|

k
k + 1

ek + 1

ek
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e0

Figure 2.1: The path comparison between the real tree (left) Z constructed using
heapify and the verifier tree path (right) h constructed by taking successive hashes
with the sequence si finds a collision at level k.

The verifier who applies successive hashing will arrive at a sequence of hashes
e0, e1, · · · , elog |S|. The adversary A∗ evaluates this sequence in the same manner
as the verifier would and also looks at the values Z[|S|+ i], Z[⌊ |S|+1

2 ⌋], · · · , Z[1] as
obtained by heapify(S). The adversaryA∗ compares the two sequences and finds the
minimum k ≥ 0 such that Z[⌊ |S|+i

2k
⌋] ̸= ek, but Z[⌊ |S|+i

2k+1 ⌋] = ek+1. This is illustrated
in Figure 2.1. If bk = 0, then it returns the pair (Z[⌊ |S|+i

2k
⌋] ∥Z[⌊ |S|+i

2k
⌋+1], ek ∥hk)

as a collision. If bk = 1 it returns the pair (Z[⌊ |S|+i
2k
⌋ − 1] ∥Z[⌊ |S|+i

2k
⌋], hk ∥ ek). If

no such k is found, it aborts.
We argue that Pr[hash-collisionH,A∗ ] ≥ Pr[authΠ,A]. To see this, consider the

event that A is successful. It suffices to show that A∗ is also successful. We
distinguish two cases. In the first case, we have H(e) = H(Si). As e ̸= Si, therefore
A∗ has found a collision and the condition holds. Otherwise we have that H(e) ̸=
H(Si). As the verification is successful, we must have hlog |S| = s. Therefore there
must exist some k at which the condition holds. Without loss of generality, let
bk = 0. As Z[⌊ |S|+i

2k
⌋] ̸= ek we have that Z[⌊ |S|+i

2k
⌋] ∥hk ̸= ek ∥hk. Additionally,

Z[⌊ |S|+1
2k+1 ⌋] = ek+1 = “h:” ∥H(⌊Z[ |S|+i

2k
⌋] ∥Z[⌊ |S|+i

2k
⌋ + 1]) = “h:” ∥H(ek ∥hk), so a

collision has occurred.
For the case |π| < log |S|, the adversary A∗ finds the internal node of the tree

Z which lies at a distance |π| from the root and its index at this level is again
constructed from the binary number obtained by concatenating the bits b in π.
Since it is the internal node of a complete tree, it has two children a and b and its
value will be “h:” ∥H(a ∥ b) where a is also prefixed by “h:”. On the other hand, the
claimed e is prefixed by “c:”, and so e ̸= a ∥ b. The adversary A∗ then proceeds to
find the minimum k as before, but this time starting at a distance only |π| from the
root instead of log |S|.

Lastly, for the case |π| > log |S|, the adversary A∗ applies |π| − log |S| − 1
successive hashes with the sequence s0, s1, · · · , s|π|−log |S|−1 on the sides b0, b1, · · · ,
b|π|−log |S|−1 in the same manner that the verifier would by consuming the first
|π| − log |S| − 1 elements of π. At that point, it arrives at some value v which is
prefixed by “h:”. It then computes i as before by using the remaining bits b in the
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proof that has not yet been consumed, and considers the element Si for which it
will hold that v ̸= Si since it is prefixed by “c:”. It can then proceed as before to
find k.

Once the marking of nodes as leaves or internal nodes has been established, the
limitation that |S| = 2k can also be relaxed by working with an incomplete binary
tree instead of a complete binary tree.

Due to the way the Merkle Tree construction works, it can also be used to
work with authenticated sequences in which positions are significant. To make this
explicit, the verify function can be extended to also accept a positional argument
i. Correctness and succinctness are defined as before. The security definition must
then be altered to mandate that no polynomial adversary can produce arguments
S, e, i, π such that verify(S, e, i, π)∧S[i] ̸= e, except with negligible probability. The
construction and proof of security remain the same.

2.4.2 Sparse Merkle Trees
Merkle Trees allow inclusion proofs, but not exclusion proofs, i.e, proving that an
element e is not in the S that was used to construct the tree root s. We can extend
the authenticated set protocol to support such exclusion proofs. To do this, we
allow the data structure to store key-value pairs. This generalizes the previous
construction, as keys can be taken to be the indices within the sequence S. As |S|
is polynomial in λ, we can treat this new authenticated data structure as a means
to encode a partial function f : {0, 1}p(λ) ⇒ {0, 1}∗ for some fixed polynomial p.
We will only concern ourselves with such functions defined only in a polynomial
number of inputs, |f | = p(λ). We call this primitive an authenticated dictionary.

The new protocol consists firstly of compress which takes some function f and
returns a succinct root s. Secondly, of a function prove which takes a key k and
a function f and produces a proof π that f(k) is the value of f for k, or that
f(k) = ⊥. Lastly, verify takes a root s, a proof π, a key k and a value v (which can
be ⊥) and returns true or false indicating whether the proof is correct. Correctness,
succinctness are defined as before. Security is also similar, keeping in mind that
no adversary should be able to prove that the function is defined where it is not,
or that the function is undefined where it is. Exclusion proofs for some key k are
constructed by showing that f(k) = ⊥.

Sparse Merkle Trees, introduced by Laurie and Kasper [99], are an authenticated
dictionary construction.

The prover construction is illustrated in Algorithm 8. The heapify algorithm
generates a Merkle Tree with 2p(λ) leaves. At the leaf of location k, it places the
value H(“c:” ∥ f(k)) if f is defined at k; otherwise, it places the value H(ϵ). This
is done to distinguish the function f being defined and having the empty string as
its value versus being undefined. We force keys to have a length of exactly p(λ), so
internal nodes are represented using shorter keys. Internal nodes are evaluated as
before, noting that the internal node with key k has two children with keys k0 and
k1. As the size of the tree is now fixed, there is no need to prefix internal nodes with
“h:”. The root is the internal node keyed with the empty string ϵ, and so compress
returns Z[ϵ].
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Algorithm 8 The prover of the Sparse Merkle Tree construction for dictionaries
of polynomial size p(λ).
1: function heapifyH(f)
2: Q← [ ]
3: for (k, v) ∈ f do
4: Z[k]← H(“c:” ∥ v)
5: Q← Q ∥ k ▷ Queue key for upward propagation
6: end for
7: N ← [H(ϵ)]
8: for i← 1 to p(λ) do ▷ Compute hashes of empty subtree with height i
9: N [i]← H(N [i− 1] ∥N [i− 1])
10: end for
11: while Q ̸= [ ] do
12: k ← Q[0]
13: Q← Q[1:]
14: if Z[k ⊕ 1] = ⊥ then
15: Z[k ⊕ 1]← N [p(λ)− |k|]
16: end if
17: k ← k[:− 1] ▷ Consume the last bit of the key
18: Z[k]← H(Z[k0] ∥Z[k1])
19: if k ̸= ϵ then
20: Q← Q ∥ k
21: end if
22: end while
23: return Z
24: end function
25: function compressH(f)
26: return heapifyH(f)[ϵ]
27: end function
28: function proveH(f, k)
29: Z ← heapifyH(S)
30: π ← [ ]
31: while k ̸= ϵ do
32: π ← π ∥Z[k ⊕ 1]
33: k ← k[:− 1]
34: end while
35: return π
36: end function

This tree has an exponential number of nodes. The trick [44] to make this
evaluation possible in polynomial time is to observe that f is only defined in a
polynomial number p(λ) of values and hence most of the leaves will have a value of
H(ϵ). The root of any subtree of the same size whose leaves are all empty will have
the same hash value, and so these can be precomputed. These are evaluated and
cached in the array N [i] which stores the hash of the empty subtree with height
i. The computation is polynomial because, for each non-empty leaf, the number
of nodes that need to be filled in is at most p(λ), and the number of non-empty
leaves is p(λ), bounding the number of nodes that need to be filled in by p2(λ). The
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precomputed values N are used to fill in any direct children of those nodes which
correspond to empty subtrees of a particular height.

Algorithm 9 The verifier of the Sparse Merkle Tree construction for dictionaries
of polynomial size p(λ).
1: function verifyH(s, π, k, v)
2: if |π| ̸= k then
3: return false
4: end if
5: if v = ⊥ then
6: v ← ϵ
7: else
8: v ← “c:” ∥ v
9: end if
10: e← H(v)
11: for h ∈ π do
12: if k mod 2 = 0 then
13: e← H(e) ∥h
14: else
15: e← h ∥H(e)
16: end if
17: k ← k[:− 1]
18: end for
19: return e = s
20: end function

The verifier is illustrated in Algorithm 9. It is identical to the simple Merkle
Tree verifier, with the exception that it can now look at the bits of the key k to
obtain the path it must follow from the leaf to the root.

Correctness follows because the evaluation is deterministic. For succinctness,
note that proofs π have size Θ(log(p(λ))). Lastly, security is similar to standard
Merkle Trees and reduces from the collision resistance of H. One aspect that makes
the security proof easier is that the size of Sparse Merkle Trees is known to be
2p(λ), which means that the verifier can always check that |π| = k = p(λ) prior to
verification. As such, no cases need to be taken for |π| ̸= k. Lastly, for the detail of
the special value ⊥, we note that any fraudulent claim of inclusion for points where
the function is undefined or vice versa will cause a collision because “c:” ∥ v ̸= ϵ for
any v.

Sparse Merkle Tree proof sizes are |k|λ where |k| denotes the size of the key and
|λ| denotes the output of the hash function H. They can be optimized by leaving
out hashes N corresponding to empty subtree siblings, which can be computed
locally by the verifier, bringing the proof size down to |k|+ λ logn.

Sparse Merkle Trees support a wide range of useful operations, among others
succinctly proving that an assignment has been made [38]. The authenticated
dictionary primitive can include a prove-assign(f1, k, v) which produces a proof π
and a ver-assign(s1, s2, π, k, v) method which returns a boolean. Given a trusted
root s1 that the verifier knows about which corresponds to some function f1, the
prover can prove that a new root s2 corresponds to the function f2 which is identical
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to f1, except with some key k assigned to value v (the value v can be ⊥ if f2 is
now undefined at point k). Correctness and security are defined as expected. To
implement proofs of assignment, the prover shows that it has replaced the log-sized
path corresponding to k with the correct values by presenting all sibling hashes.

Remark 3 (Merkle–Patrcia Tries). Merkle–Patricia Tries are Sparse Merkle Trees
which apply path compression akin to Patricia Tries [151]. However, despite in-
creased implementation complexity, they do not achieve any improvement in perfor-
mance that cannot be achieved in standard Sparse Merkle Trees. Proofs in Patricia
Tries are |k| + λ logn bits long (and logn is O(|k|)), but, as discussed above, this
same size can also be achieved in Sparse Merkle Trees with the appropriate opti-
mizations.

2.4.3 Merkle Mountain Ranges
It is useful to use authenticated sequences as an append-only log. In that case, it
becomes necessary to succinctly prove to verifiers who only hold a root that the
underlying sequence has only been appended to and not altered.

Authenticated sequences can be augmented with an additional extend operation.
The primitive is extended by two additional methods, prove-extend and ver-extend.
The method prove-extend(S1, U) takes two sequences S1, U and produces a proof
π. The method ver-extend(s1, s2, π, U) takes two roots s1 and s2 corresponding to
sequences S1 and S2 = S1 ∥U respectively, a proof π, and a sequence U and returns a
boolean. Given a verifier who has a trusted root s1 which corresponds to a sequence
S1, the prover wants to prove to the verifier that a new root s2 corresponds to the
sequence S2. Succinctness here mandates that |π| ∈ O(|U | + polylog(|S1|)) and
correctness and security as defined as expected.

An additional variant allows equipping authenticated sequences with a prefix
operation. This is similar to extend, but the sequence U is unknown to the verifier.
More specifically, the primitive is extended by two methods, prove-prefix and ver-pref.
The method prove-prefix(S1, S2) takes two sequences S1 and S2 and produces a
proof π. The method ver-pref(s1, s2, π) takes two roots s1 and s2 corresponding to
sequences S1 and S2 respectively and returns a boolean. Here, the prover claims
that there is some sequence U which extends the previous sequence S1, but the
verifier is indifferent as to what it is, beyond the fact that s1 corresponds to a prefix
of the sequence that s2 corresponds to. Note that in this case, U can be O(Θ), but
succinctness requires that |π| ∈ O(polylog(S2)), and so U cannot be made part of
the proof.

These two extensions to authenticated sets can be achieved by Merkle Mountain
Ranges, which were introduced by Laurie, Langley and Kasper in the context of
Certificate Transparency [100] and named by Todd [146].

The Merkle Mountain Range construction is illustrated in Algorithm 10. The
compress algorithm makes use of the compress-MT function of a standard Merkle
Tree. It takes as input a sequence S to compress. In each step, it takes the longest
prefix of S which is a power of 2 and calculates its Merkle Tree Root using the
standard Merkle Tree compression function compress-MT which is called a peak. It
does this with successively smaller prefixes until the whole sequence is consumed. It
then collects all of these peaks by concatenating them together and hashies them to
produce the final root. The number of peaks produced will be equal to the number
of ones in the bit representation of the number |S| and so are O(log |S|).
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Algorithm 10 The Merkle Mountain Range construction.
1: function peaksH(S)
2: v ← ϵ
3: while S ̸= ϵ do
4: p← 2⌊log |S|⌋

5: L← S[:p]
6: S ← S[p:]
7: v ← v ∥ compress-MTH(L)
8: end while
9: return v
10: end function
11: function compressH(S)
12: return H(peaksH(S))
13: end function

It is possible to implement prove and verify akin to Merkle Trees. The imple-
mentations are almost identical, with the only difference being that, at the level of
the peaks, all O(log |S|) peaks must be included in π to be able to arrive at the
final root. The construction remains succinct.

To prove that a particular element e has been added to the Merkle Mountain
Range, it is sufficient to only present the peaks to the verifier, a logarithmically sized
proof. This allows the verifier to produce the new Merkle Mountain Range root as
well as the new peaks. Therefore, to show extension by a sequence U , prove-extend
suffices to send the peaks to the verifier and allow the verifier calculate the new
peaks and root for every element in U in order.

On the other hand, to show prefix, it suffices to show the peaks as well as a log-
arithmic number of elements corresponding to U . More specifically, U is consumed
in successively larger portions, each used to match one of the outstanding peaks
of S. For each portion of U , only the root of the corresponding Merkle Tree that
matches the peak in S needs to be sent in the proof. Once U has been consumed
sufficiently to match all the peaks of S (for which O(log |S|) hashes are needed),
the remaining elements of U are consumed in powers of two (for which O(log |U |)
hashes are needed). Hence, prove-prefix is also succinct.

2.5 Model

2.5.1 The Random Oracle
Real protocols are instantiated using real hash functions. However, as concrete
mathematical objects, these are not possible to analyze cryptographically, as they
do not have a security parameter. For example, SHA256 is a function with a fixed
size of 256 bits. In these terms, one cannot talk about negligible probability of fail-
ure. Keyed hash functions in which the function depends on the security parameter
are possible to analyze in this manner, but their use is limited in practice. Addi-
tionally, many of the guarantees provided by keyed hash functions discussed above
are insufficient for more elaborate protocols. In particular, collision and preimage
resistance are not enough for our needs. Nevertheless, our intuition is that practical
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concrete hash functions behave nicely, and we wish to include this notion in our
model.

To bypass these limitations, we model our hash functions in the Random Oracle
model [19]. In this model, the hash function behaves like an ideal random function.
This is helpful, because we can argue all of its outputs will be unbiased and inde-
pendent. This abstraction also signifies that we are interested in working in the
realm of protocol design, and the intricacies of practical hash function design and
implementation, which stands in the realm of efficient symmetric cryptography, are
beyond the scope of our work.

In the Random Oracle model, we assume the existence of a global oracle machine
H to which every party, adversarial or honest, has access to. The machine models
the hash function and hence allows parties to ask for its evaluation at any input.
The Random Oracle machine receives any input in {0, 1}∗ and returns an output
in {0, 1}κ.

Algorithm 11 The Random Oracle model parameterized by security parameter κ.
1: T ← ∅
2: function Hκ(x)
3: if x ̸∈ T then
4: T [x]

$← {0, 1}κ
5: end if
6: return T [x]
7: end function

The output is chosen as illustrated in Algorithm 11. In detail, the Random
Oracle is parameterized by the security parameter κ. Upon receiving some input
x, if the input has not been encountered before, then it produces a fresh uniformly
random κ-bit string which it stores in a dictionary T and returns. If on the other
hand it receives an input it has seen before, it answers consistently with its previous
answer, giving the same answer for the same query by consulting the dictionary T .
Hence, this functionality is stateful.

It is imperative that the instance of the machine that all parties communicate
with is the same. Hence, if a party makes a particular query x to the oracle and
then another party asks the same query, the answer will be the same. If the random
oracle is modelled as a stateful functionality, communication between the parties
and the Random Oracle machine can be modelled as Interactive Turing Machines
communicating.

Alterantively but equivalently, the Random Oracle can be defined as a shared
oracle which answers queries according to a function selected uniformly at random
at the beginning of the execution. As a random function can neither be sampled in
polynomial time nor represented in polynomial space, this latter formulation means
that, when the oracle is treated that way, it cannot be modelled as an Interactive
Turing Machine, but must remain an oracle. In this formulation, at the beginning
of the execution, the random oracle H is sampled uniformly at random from the
function space ({0, 1}κ){0,1}∗ , and the adversary and honest parties are invoked with
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oracle access to this same H. As all parties will be polynomial in our treatment,
this sampling can also be understood to be done uniformly at random from the
function space ({0, 1}κ){0,1}p(κ)

where p(κ) denotes the polynomial bounding the
total execution of all parties together.

An important feature of the Random Oracle model is that the adversary cannot
compute H locally, but must invoke the oracle to do so. This means that, in our
mathematical treatment, we are allowed to speak of the queries the adversary has
made, count them, look at their responses, and so on. This ability, termed random
oracle observability will be critical in our analyses. On the other hand, we will
not make use of the ability of a computational reduction to modify the outputs of
the random oracle at will, termed random oracle programmability, which is at the
heart of many security proofs in cryptography. Our results are therefore stronger,
as we only assume a non-programmable Random Oracle [117, 56], which is a weaker
assumption than usually made.

We note two features of the Random Oracle: First, it is collision-resistant.
Concretely, if a polynomial number of queries is made to the Random Oracle, then
the probability that a collision will occur is negligible. Secondly, an adversary can
predict the output of the Random Oracle prior to making a new query to it with
negligible probability.

2.5.2 The Environment
We will begin with a simple model and make it successively more nuanced until it is
sufficiently sophisticated to satisfactorily capture the real world. First, we describe
the simple environment in which the network is synchronous and the execution is
with static difficulty. We then relax the synchrony assumption by introducing a
∆-bounded delay network. Subsequently, we relax the static assumption by intro-
ducing executions of variable difficulty in which populations can be adversarially
evolved. Last, we give the adversary even more power by allowing her to adaptively
corrupt parties of her choice. We now introduce these models in order.

In our setting, we will study executions of protocols in which some parties are
honest while others are adversarial. All the honest parties typically run the same
code termed the honest protocol (which is the protocol we will design), while the
adversary can run any code she wishes, but is bounded by polynomial time bounds.
Both the honest parties and the adversary are probabilistic Turing Machines. As
we are working in distributed settings, our protocols will be long-lived and involve
multiple parties running simultaneously and communicating over the network while
maintaining local state. Among the parties in our execution, we will denote by n
the total number of parties and with t the number of parties that are adversarial.
To strengthen our adversary, we assume all the adversarial parties collude and are
controlled by a single adversary. The situation where multiple adversaries are not
colluding is also captured by our stronger model (this can be captured by a single
adversary which simulates the multiple non-colluding adversaries).

To model the distributed setting, we must speak of executions concretely. To-
wards this purpose, we conjure an environment Z which is an Interactive Turing
Machine [148] (ITMs) and is responsible for orchestrating the whole execution. An
Interactive Turing Machine is a Turing Machine which models interactive compu-
tation by employing additional input and output tapes that can be written to by
external machines. The machine can decide to pause computation by entering a
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special state and its computation is resumed by writing to its input tape.
The environment spawns n − t honest parties running the honest protocol

Π as n different Interactive Turing Machines. The environment also spawns one
adversarial Interactive Turing Machine A. The honest parties and the adversary
can pass messages to the environment and receive messages from it by writing
and/or reading from their interactive tapes. The environment takes as input the
security parameter 1λ and functions as an operating system scheduler to activate
the honest parties and the adversary according to some schedule. The environment
halts after polynomial time. The Interactive Turing Machine model is equivalent to
having the environment faithfully simulate the execution of the honest parties and
the adversary and correctly maintaining their state across pausing and resumption.

We study an execution by observing its transcript (the messages exchanged by
the parties) as well as the internal state of the parties throughout the execution.
This transcript, which we will denote viewn,t

Π,A, is a random variable which is a
function of the coins of the probabilistic Interactive Turing Machines that form
the execution, namely the environment itself, the adversary, the honest parties,
and the Random Oracle. We remark that this treatment is similar to the setting
of Universal Composability [36]. Despite the similarities on the surface, we do not
fully employ it and neither are our protocols composable, nor are our security proofs
simulation-based. On the contrary, we use a direct property-based approach in our
proofs instead of employing universally composable functionalities.

A skeleton for the environment is illustrated in Algorithm 12.
At the beginning of the execution, all the ITMs are booted by invoking their

constructors. The environment spins up n − t honest machines that run the pro-
tocol Π and one adversarial machine that runs the protocol A and represents the
t adversarial parties. These machines are stateful, and so we denote the respective
ITM (which can be paused and resumed) by Pi for the honest parties (running
protocol Π) and by A for the adversary (running protocol A). The machines are
given time polynomial in λ by invoking their constructors with the parameter 1λ.
During construction, the adversary learns of the number of honest parties n− t and
adversarial parties t. Importantly, the honest parties do not have this privilege. We
call this setting permissionless setting (also known as the anonymous byzantine or
open setting), because honest parties are not informed of each others’ identities nor
their count. Contrary to our treatment throughout this thesis, there also exists a
permissioned [17] setting in the blockchain literature. In that setting, the n nodes
are given authenticated channels between each other and the quantity n is known
to all parties. We will not make this assumption here. The fact that we are working
in the permissionless setting gives rise to the decentralized title of this thesis.

Time is quantized into discrete rounds [60] (or slots [89]) numbered r = 1, 2, 3, · · · .
The environment contains a main loop which executes one iteration per round r for
a total polynomial number of rounds p(λ). During every round, it first activates
every honest party Pi by invoking its execute method. Subsequently, at the end of
the round, it actives the adversary A. The fact that the adversary is activated at
the end of every round is an advantage for the adversary. We call such an adversary
a rushing adversary, because it can use its computational power for the round after
it has observed what the honest parties have done during the same round. Both
the honest party and the adversary can know the index of the current round by
counting how many times they have been activated so far in their persistent state.
Because both the honest parties and the adversary are PPT machines, they will
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Algorithm 12 The environment and network model running for a polynomial
number of rounds p(λ).
1: function Zn,t

Π,A(1
λ)

2: for i← 1 to n− t do ▷ Boot honest ITMs
3: Pi ← new Π(1λ)
4: end for
5: A← new A(1λ, n, t) ▷ Boot adversarial ITM
6: C ← [ ]
7: for i← 1 to n− t do
8: C[i]← [ ]
9: end for
10: for r ← 1 to p(λ) do
11: C ← ∅
12: for i← 1 to n− t do
13: C ← C ∪ {Pi.execute(C[i])} ▷ Execute honest party i for round r
14: end for
15: C ← A.execute(C) ▷ Execute rushing adversary for round r
16: for c ∈ C do ▷ Ensure all parties will receive message c
17: for i← 1 to n− t do
18: assert(c ∈ C[i])
19: end for
20: end for
21: end for
22: end function

run for polynomial time every time they are activated. Additionally, we assume n
is polynomial, thus ensuring the total execution time is polynomial.

2.5.3 The Network
When an honest party is activated, it is given messages from the network to read,
which are written to a special location within its input tape by the environment.
Here, we denote the network messages received by party i as C[i] and pass them
as input to the execute method. The party can then write messages to the network
during the round, which we denote by the execute method returning a value. We say
that such messages are diffused to the network and we will use the Diffuse notation
within the implementation of honest protocols to signify that a message needs to
be diffused to the rest of the parties. At the end of the round, the adversary can
see all the messages C that have been diffused by the honest parties during the
same round. The adversary can then decide what will appear in the network tape
of every honest party at the beginning of the next round by outputting an array C
that contains a list of messages C[i] for every party i. The adversary can reorder the
messages and insert as many of her own as she wishes. That is, it is possible that
C[i] will contain more messages than C and that the messages in C[i] will appear
in a different order than in C. As such, communication is not authenticated.

However, she must ensure that all messages diffused by any honest party during
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the previous round appear in the network tape of every other honest party at the
beginning of the next round. This is ensured by the assertion in Line 17. This means
that no messages can be dropped by the adversary. This connectivity assumption
is equivalent to assuming that each honest party is not eclipsed [67, 153] from the
rest of the network. In practice, this is achieved by ensuring that every honest
party is connected to every other honest party through some path, although not
necessarily directly. Practical peer-to-peer protocols use gossiping [65] to ensure
messages reach every participant of the network. The network model abstracts out
such details and treats a round as the unit of time which is needed for a message
to reach from every honest party to every other honest party.

Crucially, because the adversary can reorder messages and inject as many ad-
ditional messages as she pleases, she is a sybil adversary [49]. This means that the
adversary can fake multiple identities and pretend to produce messages by multiple
parties, potentially more than t. It will be the job of our honest protocol to produce
a sybil resilient mechanism in which such attacks have no impact on the protocol’s
security. Furthermore, the adversary can split the view of the honest parties be-
cause she can communicate different messages to different honest parties and have
C[i] ̸= C[j] for i ̸= j on the same round. For example, the order in which messages
are delivered can be different for every honest party and the adversary may inject
different messages of her own for every honest party.

The requirement that messages diffused at the end of one round are delivered
at the beginning of the next is the synchronous model. A large part of our analysis
will be made there.

In addition to the details specified in the environment of Algorithm 12, we
allow the honest parties to receive auxiliary input, distinguished from the network
tape. This input is adversarially chosen and can influence the decisions of the
honest parties. Once these notions have been defined, such input will correspond
to transactions that the honest parties will wish to include in their blockchains.

A relaxation of the synchronous model is the ∆-bounded delay model and is
illustrated in Algorithm 13. In this model, the adversary may delay messages up
to ∆ rounds before finally delivering them. Any message diffused by any honest
party at round r must appear in the network tapes of all other honest parties prior
to round r +∆. This ∆ is unknown to the honest parties, although the security of
the protocol requires that ∆, together with other protocol parameters, satisfies a
number of conditions. As such, this model stands between the synchronous setting
(where ∆ is known by all honest parties beforehand or, equivalently, ∆ = 1) and
the semi-synchronous setting (where ∆ is completely unknown) in that, while ∆
itself is unknown, it is governed by equations which express a trade-off between ∆
and other quantities, and these equations are known.

Chapters 3, 6, 4, 7 are explored in the synchronous model. We extend our
protocol to the ∆-bounded delay model in Chapter 5.

2.5.4 Evolving Population
So far, we have defined the environment for executions in which n and t are fixed
throughout the execution. We call this setting the static difficulty [60, 58] setting.
The model can be relaxed to allow the population to evolve with time. This gives
rise to the variable difficulty [61] model. Instead of two fixed values n and t, we
instead consider two sequences of values {nr}r∈[p(λ)] and {tr}r∈[p(λ)]. At round
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Algorithm 13 The environment and network model in the ∆-bounded delay set-
ting.
1: function Zn,t

Π,A(1
λ)

2: for i← 1 to n− t do ▷ Boot honest ITMs
3: Pi ← new Π(1λ)
4: end for
5: A← new A(1λ, n, t) ▷ Boot adversarial ITM
6: C ← [ ]
7: for i← 1 to n− t do
8: C[i]← [ ]
9: end for
10: seen← [ ]
11: diffused← [ ]
12: for r ← 1 to p(λ) do
13: C ← ∅
14: for i← 1 to n− t do
15: seen[i]← seen[i] ∪ C[i]
16: C ← C ∪ {Pi.execute(C[i])} ▷ Execute honest party i for round r
17: end for
18: diffused[r]← C
19: C ← A.execute(C) ▷ Execute rushing adversary for round r
20: for c ∈

⋃
1≤r′≤r−∆ diffused[r′] do ▷ Ensure ∆-delay

21: for i← 1 to n− t do
22: assert(c ∈ seen[i])
23: end for
24: end for
25: end for
26: end function

r, when nr − tr < nr−1 − tr−1, the number of honest parties has decreased and
(nr−1 − tr−1)− (nr − tr) honest ITM instances are killed by the environment. The
choice of which instances will be killed is made by the adversary. When nr − tr >
nr−1−tr−1, the number of honest parties has increased and (nr−tr)−(nr−1−tr−1)
new honest instances are spawned up by cloning the state of some existing honest
instances. The choice of which instances to clone is made by the adversary. An
increasing or decreasing tr does not affect the spawned instances. Finally, the
choice of how nr and tr evolve is made adaptively by the adversary [59] based on
the execution so far.

In the variable difficulty setting, we will concern ourselves with protocols in
which the population evolution is gradual and observes certain bounds [61].

Definition 12 (Bounded demographic). For γ ∈ R+, a population sequence (nr)r∈N
is called (γ, s)-respecting if for any S of at most s consecutive rounds, maxr∈S nr ≤
γ ·minr∈S nr.
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Algorithm 14 The variable difficulty environment in the ∆-bounded delay setting.
1: function ZΠ,A(1λ) ▷ Boot adversarial ITM
2: A← new A(1λ)
3: (n1, t1)← A.init()
4: I ← ∅
5: for i← 1 to n1 − t1 do ▷ Boot honest ITMs
6: Pi ← new Π(1λ)
7: I ← I ∪ {i}
8: end for
9: C ← [ ]
10: for i ∈ I do
11: C[i]← [ ]
12: end for
13: seen← [ ]
14: diffused← [ ]
15: for r ← 1 to p(λ) do
16: C ← ∅
17: for i ∈ I do
18: seen[i]← seen[i] ∪ C[i]
19: C ← C ∪ {Pi.execute(C[i])} ▷ Execute honest party i for round r
20: end for
21: diffused[r]← C
22: (C, kill, spawn, tr)← A.execute(C)
23: for (i, j) ∈ spawn do ▷ Spawn new honest parties as clones of old ones
24: assert(Pj ̸= ⊥)
25: Pi ← Pj

26: seen[i]← seen[j]
27: I ← I ∪ {i}
28: end for
29: for i ∈ kill do ▷ Kill honest parties of the adversary’s choice
30: Pi ← ⊥
31: I ← I \ {i}
32: end for
33: nr ← |I|+ tr
34: for c ∈

⋃
1≤r′≤r−∆ diffused[r′] do ▷ Ensure ∆-delay

35: for i ∈ I do
36: assert(c ∈ seen[i])
37: end for
38: end for
39: end for
40: end function

2.5.5 Adaptive Corruption
The environment already allows the adversary to control a certain number of parties.
If the identities of these parties are fixed at the beginning of the execution, as
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presented before, we speak of static corruption. This is sufficient to treat Proof-of-
Work blockchains (Chapters 3, 5 and 4), but a more nuanced model is required for
Proof-of-Stake (Chapters 6 and 7). In Proof-of-Stake protocols, just which parties
are corrupted will be significant, because the corrupted parties will be maintaining
important secrets in their local state (namely, keys controlling money). As such, it
is not sufficient to capture the notion that t of n parties are corrupted, but the model
will require the adversary to specify which parties are corrupted. At the point of
corruption, the honest party Pi relinquishes its entire state to the adversary and is
killed, while t is incremented by 1. In this more detailed model, the adversary first
attempts to corrupt an honest party Pi by requesting to do so from the environment.
This permission is granted after a certain delay of Λ rounds, where Λ is a parameter
of our model (and can be different from the network delay ∆). In particular, if
Λ = 0 we talk about fully adaptive corruptions and the corruption is immediate.
The model with Λ > 0 is referred to as allowing semi-adaptive corruptions.

2.6 The Application Layer
In creating a decentralized cryptocurrency, the goal is to build a monetary system
which is not reliant on any third parties. Money is moved around by issuing trans-
actions, which instruct the transfer of a certain amount from one party to another.
If Alice holds a certain amount of money and she wishes to give it to Bob, she
creates a transaction which encodes, in some form, the instruction to pay Bob that
certain amount. That transaction is encoded into a string that is then signed by
Alice and transmitted to the network.

Contrary to centrally controlled currencies in which banks or payment processors
are responsible for maintaining balances, decentralized cryptocurrencies allow any
participant to verify the validity of a transaction. In order for this to be possible,
every transaction is transmitted to every interested party on the network, a so-called
full node, who validates it. By recording all past transactions, every participant is
aware of who owns what and can thereby determine if an attempt to spend money
is legitimate. No special privileged or trusted nodes exist on the network.

We now formally define what a transaction is and look at the transaction formats
for Bitcoin and Ethereum. In addition to being the largest cryptocurrencies, these
two systems define two prototypal transaction formats known as the UTXO model
and the Account model. All other cryptocurrencies adopt either model, or a hybrid
of the two [154].

2.6.1 Transactions
Transactions are part of the application layer. As this thesis concerns itself with
the consensus layer which organizes transactions into sequences, we will generally
not concern ourselves about their format, and we will allow the application layer to
specify any transaction format it wishes. Therefore, transactions can be any strings
that are deemed valid by the application layer.

Definition 13 (Transaction). A predefined language T of strings in {0, 1}∗ is called
a transaction language. Elements tx ∈ T are called transactions.

While specific applications such as Bitcoin or Ethereum mandate that transac-
tions follow a certain format and must include, for example, signatures, we will not
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impose such requirements on our protocol. As there are preconceptions about what
constitutes a transaction, we feel the need to give some examples of transaction lan-
guages. The set of valid transactions could be the empty set, the set {0, 1} of bits,
the set of natural numbers, or the set of triplets of a message, a public key, and a
digital signature that pass verification under a certain signature scheme. While the
latter corresponds more closely to practical protocols such as Bitcoin, our treatment
is quite general and has no requirements to remain within this strict format.

Once the set of valid transactions T has been defined by the application layer, it
can now specify a validity language which specifies which sequences of transactions
are valid. This captures what is deemed to be a valid transaction given a previous
history of transactions in the system and allows the application layer to specify, for
example, that double spending is not allowed.

Definition 14 (Validity Language). Given a transaction language T , a predifined
set of finite transaction sequences V ⊆ T ∗ is called its validity language.

The validity languages we will concern ourselves with have the property that
they contain the empty transaction sequence ϵ. This is useful because it allows a
node booting up anew to begin with an empty transaction sequence before it starts
receiving and validating transactions. Our validity languages are also extensible:
Given a valid transaction sequence tx ∈ V and a new candidate transaction tx ∈ T ,
it is possible to check whether tx ∥ tx ∈ V by applying a predicate extend(tx, tx).
This extend predicate ensures that the transaction only spends money that belongs
to it and exists in the system. Furthermore, once a transaction which invalidates
the sequence has been added to the sequence, the sequence remains invalid.

In addition to allowing transactions that spend existing money, it must be possi-
ble to also create new money. The macroeconomic rules for money creation are cap-
tured by another application-specific predicate mints(tx, tx) which checks whether
a transaction tx is a valid minting transaction. The rules for this can include, for
example, limiting the amount of money generated per block. In typical cryptocur-
rencies, there is one minting transaction allowed per block and the amount that can
be generated by this minting transaction has an upper bound which is algorithmi-
cally determined [54]. We will leave this predicate undefined in our treatment.

Validity by extension is captured by the definition below:

Definition 15 (Validity by extension). Given an extension predicate extends, and
a transaction language T , the validity language Vextends,mints,T obtained by extension
is the minimum set of transaction sequences which satisfies the following:

1. Base. ϵ ∈ Vextends,mints,T

2. Extension. For all tx ∈ Vextends,mints,T , for all tx ∈ T , if extends(tx, tx) or
mints(tx, tx) then tx ∥ tx ∈ Vextends,mints,T .

From the above definition, the following result follows immediately.

Lemma 4 (Validity Language Monotonicity). Consider a validity language V gen-
erated by extension of a transaction language T . For all w,w′ ∈ T ∗ we have
w ̸∈ V⇒ w ∥w′ ̸∈ V.
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Monotonicity mandates the natural property that if a sequence of transactions
is invalid, it cannot become valid again by adding further transactions.

Furthermore, it is useful to ensure transactions are unique. This is captured in
the following requirement for the validity languages of our interest.

Definition 16 (Validity Language Transaction Uniqueness). A validity language
V pertaining to a transaction language T has transaction uniqueness if it never
contain the same transaction twice: for any tx ∈ T and any w1, w2, w3 ∈ T ∗ we
have

w1 ∥ tx ∥w2 ∥ tx ∥w3 ̸∈ V .

The natural “uniqueness” property of transactions holds in existing implementa-
tions, but is not necessary for our treatment, albeit allowing for some simplifications.

For illustrative purposes, and because we aim our protocols to be deployable
to existing blockchain systems, in particular to Bitcoin-compatible and Ethereum-
compatible chains, we now explore two particular approaches to the transaction
and validity languages employed in the blockchain space: the UTXO model and
the Account model. We note, however, that our consensus protocols which en-
able compression and interoperability are not limited to these two models, but are
generic.

2.6.2 Keys and addresses
While the consensus layer does not require this from the application layer, all known
application layer instantiations make use of public/private keys. These keys are used
to identify money holders in the system. The public key is used to receive money,
while the private key is used to sign instructions to send money. The public key is
publicized, while the private key remains secret. As the public key can be assumed
to be known to anyone, anyone can send money to everyone and this cannot be
prevented. The receipient does not need to authorize a payment to receive it.

To somewhat increase anonymity, it is recommended that public keys used to
receive money are not recycled. In particular, it is recommended that a new public
key is issued every time money is to be received. The set of all the private keys
that belong to a user are known as a wallet.

The lifecycle of money is as follows. If Alice wishes to pay Bob, first she contacts
Bob to ask for his public key. Bob generates a new public/private key pair and send
the public key to Alice. Alice then issues a payment instruction which instructs Bob
to be paid and contains the amount payable as well as Bob’s public key. When Bob
wishes to spend the money he received from Alice, he uses the respective private
key to sign a message sending out a payment to someone else.

Public keys used to send money are encoded into addresses using special encod-
ings such as base58 or mixed-case [34]. These addresses can include checksums or
other features which make them harder to miscommunicate or mistype.

2.6.3 The UTXO Model
The UTXO model was first introduced in Bitcoin. In the UTXO model, each trans-
action is a node in a weighted directed acyclic graph. Despite being represented as
graph nodes, transactions do not correspond to accounts or account holders, but
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denote a payment. An edge incoming to a transaction designates who is paying,
and an edge outgoing from a transaction denotes who is being paid. The edge is an-
notated with two pieces of information: Its weight that designates the amount paid;
and the address of the payment receipient. The weights are integers denominated
in the smallest denomination of the currency. In Bitcoin, this is the Satoshi, which
equals 10−8 BTC. Denominating amounts in satoshis rather than bitcoins is helpful
because it avoids rounding errors. The data of a transaction contains the collection
of its input and output edges. The hash of that data gives the transaction id, or
txid, which can be used to uniquely refer to a transaction. In the case of Bitcoin,
the hash function used for this purpose is SHA256.

A directed edge connecting two transactions denotes the transfer of money from
one transaction to the other. It indicates that money was paid to a beneficiary
through the first transaction, and that beneficiary subsequently spent the money
they had received through the second transaction. As such, a coin is a chain of
transactions. Transactions can have dangling outgoing edges, which are edges that
are outgoing from a transaction but have not yet been connected as incoming edges
into another transaction. These edges have not yet been spent and are available
for spending. They are known as Unspent Transaction Outputs (UTXOs). The
collection of all UTXOs constitutes the available money in the system.

The transaction DAG is known to all network participants. To determine how
much money Alice owns, she collects the UTXOs of the transaction DAG and
filters it according to the addresses that she is the owner of; that is, addresses
that correspond to a public key for which she owns the corresponding private key.
The sum of the amounts in these UTXOs is the total amount of money she owns.
She does not look at spent transaction outputs, because these have already been
consumed and they cannot be spent again.

To send money to Bob, Alice finds a UTXO e1 she owns. She then creates a new
transaction tx with one incoming edge e1 and one outgoing edge e2 and connects
the UTXO e1 as the incoming edge of tx. As e1 is no longer a dangling edge since it
is now incoming to tx, it is longer in the UTXO set. The outgoing edge of tx is now
dangling, and so is now part of the UTXO set. Therefore, with the transaction, the
UTXO set is updated so that e1 is removed from it and e2 is added to it. Edge e2 is
weighted by the amount that Alice wishes to pay and annotated by the address of
the beneficiary to be paid, which is deduced from the public key of the receipient.

To prove that she is the rightful owner of e1, Alice produces a signature using
the private key corresponding to the public key that corresponds to the address
annotated in e1. The contents signed by Alice’s signature include the reference to
e1 so that it is clear which coin Alice is spending. The contents also include e2 and
in particular the amount and new beneficiary. This ensures Alice’s payment cannot
be forged to be made payable to a different beneficiary.

Alice then diffuses her transaction on the network, which is subsequently received
by Bob.

A transaction can have multiple inputs. This is useful if Alice has received multi-
ple payments and she wants to make a larger payment. She creates one transaction
with multiple inputs and a single output. The transaction consumes all inputs
and pays them to the given output. A transaction can also have multiple outputs.
Because every transaction fully consumes its inputs, if Alice has received a large
payment in a single UTXO, she can consume it via a transaction that contains
multiple outputs so that she can make multiple payments with it simultaneously.
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She can also consume a large UTXO by creating a transaction that contains two
outputs: one output that pays out some amount to her desired beneficiary, and
another that pays the rest of the money back to Alice. Outputs that pay back the
original owner are known as change outputs. Change outputs are paid out to ad-
dresses created for this purpose that are known as change addresses and are owned
by the original owner. A typical transaction on a UTXO-based network consumes
one or more inputs all owned by the same owner and contains two outputs: One
which indicates the payment beneficiary, and another which indicates the change.

An edge can be a dangling outgoing edge from a transaction, in that it is not
yet an incoming edge to any other transaction. However, every edge must have a
transaction from which it is outgoing. As such, every edge can be associated with
a unique transaction that produced it. The outgoing edges of every transaction are
ordered and indexed by the natural numbers. An edge can therefore be identified
by the transaction that produced it together with its index among the outgoing
edges of that transaction. This pair is known as an outpoint.

Definition 17 (UTXO transaction). A UTXO transaction tx is a pair (in, out) of
inputs and outputs such that in is a sequence of outpoints (in1, in2, · · · ) and out is
a sequence of edges (out1, out2, · · · ). It must hold that every input ini is a tuple
(txidi, ji, σi) where the pair (txidi, ji) is an outpoint indicated by the transaction id
txidi and an index ji which marks the output index within the transaction identified
by txidi. The signature σi is a signature on tx in which all σk have been replaced by
ϵ. Additionally, it must hold that every output outi is a pair (amount, pk) indicating
the amount payable and the beneficiary address pk. The set of all syntactically valid
UTXO transactions is the UTXO transaction language TUTXO.

A transaction’s signatures must be valid. They must sign the plaintext tx in
which all σk have been replaced by ϵ. The replacement is made so that signatures
do not have to sign themselves, which would be an impossible task. They must also
pass the verification using the public key indicated by the respective outpoint. A
transaction must follow the conservation principle which mandates that the sum of
output amounts cannot exceed the sum of input amounts.

These rules define transaction validity inductively. When Alice receives a trans-
action from the network, whether it pertains to a payment to her or not, she needs
to validate it. This require Alice to maintain a currently valid UTXO set against
which she will compare the transaction and which she will use to update this UTXO
set. Therefore, to verify a transaction, the procedure followed is thus. First, Alice
already holds some valid UTXO set by the inductive hypothesis (she starts with the
empty UTXO set). First, she checks that the inputs to the new transaction refer to
outpoints that are in her existing UTXO set. She follows the outpoint pointers to
check that the law of conservation holds for the new transaction. She also verifies
all the signatures on the inputs of the new transaction using the public keys that
appear in the outputs referenced by the outpoints. As long as everything is valid,
she updates her UTXO to remove the outputs referenced by the outpoints and add
the outputs of the new transaction.

We are now ready to define transaction validity formally in the UTXO model.
While the UTXO model should already be straightforward, we go through the
exercise of presenting it precisely to illustrate the expressiveness of validity language
formulations.

First, we define outpoints.
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Definition 18 (Outpoint). Consider the UTXO transactions language TUTXO and
the transaction id hash function H. Let tx ∈ T ∗UTXO be a transaction sequence con-
taining unique transactions. Define the transaction lookup function lookup-txtx(txid)
to equal tx if H(tx) = txid and tx ∈ tx, otherwise set lookup-txtx(txid) = ⊥. De-
fine the outpoint lookup function outpointtx(txid, j) to be the jth item of out where
(in, out) = lookup-tx(txid) if such a j exists. Otherwise set outpointtx(txid, j) = ⊥.

We can now define what the UTXO set of a transaction sequence is.

Definition 19 (UTXO set). Consider the transaction language TUTXO and the
transaction id hash function H. Let tx ∈ T ∗UTXO be a transaction sequence containing
unique transactions. The UTXO set UTXO(tx) of tx is defined as the set which
contains all outpoints (txid, j) with the following properties:

1. Unspent. There is no tx′ ∈ tx with tx′ = (in′, out′) such that (txid, j) ∈ in′.

2. Transaction output. There is some tx ∈ tx with tx = (in, out) such that
H(tx) = txid and 1 ≤ j ≤ |out|.

We are now ready to define the validity language for a UTXO system. We
will define our validity language by extension according to Definition 15. The
extendsUTXO(tx, tx) predicate checks that the transaction tx can be applied on top
of the existing transaction sequence tx and is defined as follows.

Definition 20 (UTXO validity). Let tx ∈ T ∗UTXO and tx ∈ TUTXO with tx = (in, out)
and let mint be a minting predicate. Let S = (Gen, Sig,Ver) be a secure signature
scheme.

We define extendsUTXO(tx, tx) to be true if all of the following conditions hold:

1. Rightful. For all (txid, j, σ) ∈ in we have that Ver(pk, tx′, σ) where (amount, pk) =
outpointtx(txid, j) and tx′ denotes tx with all signatures replaced by ϵ.

2. Unspent. All (txid, j, σ) ∈ in form unique outpoints (txid, j) and for all
(txid, j, σ) ∈ in we have (txid, j) ∈ UTXO(tx)

3. Conserving. ∑
ini∈in

ini.amount ≥
∑

outi∈out
outi.amount .

The UTXO validity language VUTXO with macroeconomic policy mints is defined
as

VextendsUTXO,mints .

2.6.4 The Account Model
A different approach to transactions is followed in the Account Model, which was
first put forth by Ethereum. Instead of maintaining UTXOs, the Account Model
maintains account balances. Transactions are instructions to transfer an amount
from one account to another. Accounts are represented by addresses. A transaction
therefore contains the source account, the target account, the amount, as well as a
signature authorizing the transfer. The conservation principle here mandates that
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the source account must have sufficient balance to cover the amount a transaction
wishes to spend.

Contrary to the UTXO model where every UTXO is spent only once, here it is
possible to have multiple transactions which spend from the same source account,
pay into the same target account, and transmit the same amount. As such, these
transactions require a nonce, or counter, which ensures they are unique. This
counter is necessary. If such no such counter was present, the system needing
to support a repeated transfer would accept the same transaction twice. But such
admissibility of transaction duplication is problematic, as an adversary could replay
an existing transaction, with the same signature, benefiting her account twice, even
though no such intention was recorded by the sender. The counter is therefore
required to signal the fact that the sender wishes to initiate yet another transfer.

Definition 21 (Account Transaction). An account transaction tx is a tuple (from,
to, amount, ctr, σ) such that from ̸= to. The signature σ is a signature on (from, to,
amount, ctr, ϵ). The set of all syntactically valid account transactions is the account
transaction language Taccount.

Balances can be obtained from a transaction sequence by summing the amounts
transfered. We will then make use of balances to define whether an account trans-
action validly extends a transaction sequence.

Definition 22 (Account Balances). Let tx ⊆ T ∗account be an account transaction
sequence. We define the balance balancetx(acc) of an account acc at the end of
the transaction sequence tx as follows. If tx = ϵ, then define balancetx(acc) = 0.
Otherwise, tx is non-empty, so set tx = tx′ ∥ tx and let (from, to, amount, σ) = tx.
Recursively let balance′ = balancetx′(acc).

• If from = acc, then define balancetx(acc) = balance′ − amount.

• If to = acc, then define balancetx(acc) = balance′ + amount.

• Otherwise define balancetx(acc) = balance′.

We are now ready to define the validity language for an account-based system.
Again, we will define our validity language by extension according to Definition 15.

The extendsaccount(tx, tx) predicate checks that the transaction tx can be applied
on top of the existing transaction sequence tx and is defined as follows.

Definition 23 (Account validity). Let tx ∈ T ∗account and tx ∈ Taccount. Let tx = (from,
to, amount, ctr, σ) and let mint be a minting predicate. Let S = (Gen, Sig,Ver) be a
secure signature scheme.

We define extendsaccount(tx, tx) to be true if:

1. Rightful. Ver(from, tx′, σ) where and tx′ = (from, to, amount, ctr, ϵ).

2. Conserving. For all acc it holds that balancestx ∥ tx(acc) ≥ 0.

The account validity language Vaccount with macroeconomic policymints is defined
as Vextendsaccount,mints.
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2.7 Blockchains

2.7.1 The Consensus Problem
As the peer-to-peer parties in a cryptocurrency system exchange money, transac-
tions are generated and disseminated on the network. Messages on the network
naturally do not arrive at every party in the same order (as is formally captured
by our network model of Section 2.5.2). The parties need to determine whether a
newly arriving transaction is valid by comparing it against the currently adopted
transaction sequence. The order in which transactions are processed is important
because it can affect the validity of the transaction sequence. If every party orga-
nizes their transactions according to the order they receive them from the network,
they will end up disagreeing about whether a transaction is valid. This gives rise
to the double spending problem.

Consider the following situation. In the UTXO model, Alice sends 1 coin to
Eve via a legitimate transaction tx which has only one output. This transaction
is broadcast to the network and every party adopts it as valid. Subsequently,
Eve, who is malicious, generates two transactions tx1, tx2 each of which consumes
the outpoint of tx and generates a single new output of the same value, but to a
different receipient each: tx1 pays Bob, while tx2 pays back Charlie. Both tx1 and
tx2 are broadcast on the network at about the same time, and it so happens that
Bob receives tx1 before tx2, while Charlie receives tx2 before tx1. If they adopt
transactions in the order they receive them, Bob will consider tx1 to be valid and
will adopt it, while rejecting tx2 as invalid. On the other hand, Charlie will do the
opposite. Note that, without the existence of the other, each of these transactions
is individually valid, as it is rightful and conserving. When the time comes for Bob
to pay Charlie, Charlie will not agree with Bob that the money belongs to Bob.
Without consensus on which transaction occurred first, the economic participants
cannot agree who owns what, and the monetary system breaks down.

Before we describe the solution that proof-of-work offers, let us first observe
that obvious solutions do not work. Consider the following protocol: Since only
a malicious party would create a signature on both transactions tx1 and tx2, we
could eliminate both transactions and mark them as invalid as soon as the double
spend has been detected. This is not a good strategy. In this case, Eve can first
pay Bob using tx1. After she receives the services of Bob, at a much later time,
she can publish tx2, rendering Bob’s money invalid. While Eve does not gain from
this behavior, the trustworthiness of the monetary system is subverted. Simple
adjustments to this strategy do not work either. Noting that tx2 would have to be
broadcast much later, consider, for example, a protocol which waits for some time
∆ prior to establishing whether a double spend has occurred or not. If tx1 appears
at some time r0 without any double spending transaction appearing prior to time
r0 + ∆, the transaction tx1 can be accepted. Any double spending transaction
tx2 appearing after time r0 + ∆ is rendered invalid. On the other hand, if tx2
appears within time ∆, both tx1 and tx2 are rendered invalid. This protocol can be
subverted by Eve as follows. She initially broadcasts tx1 at round r0. When time
r0+∆ approaches, she broadcasts tx2 and it so happens that Bob receives tx2 prior
to time r0 +∆, while Charlie receives tx2 after time r0 +∆. This would cause Bob
to reject both tx1 and tx2, while Charlie would only reject tx2. No simple protocol
can withstand attacks that cause such disagreements.

The problem then becomes an issue of coming to an agreement about the order
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in which transactions have occurred. This problem of agreement is solved by the
consensus layer, the part of a decentralized system which attempts to organize ap-
plication layer transactions into sequences that belong to the application’s validity
language by ordering them into transaction sequences.

As in later chapters we will speak about multiple decentralized systems interop-
erating, it is helpful to note which ledger L the party in question maintains. In the
simplest case, each ledger is associated with a unique cryptocurrency, but we will
later relax this. The L is the protocol which the honest parties execute to maintain
their local views.

Definition 24 (Ledger). A ledger protocol L is an honest probabilistic polynomial-
time algorithm for maintaining a transaction sequence belonging to a validity lan-
guage V.

To make the problem precise, we will consider the honest parties’ beliefs on
which transactions have occurred and what their order is. The transaction sequence
reported by an honest party at a particular round is known as the ledger view of
the party. An honest party’s protocol exposes two methods related to transaction
processing: A method to read the current transaction sequence and a method to
write a transaction to their ledger.

Definition 25 (Ledger view). The ledger view LP [r] ∈ V of an honest party P at
round r pertaining to ledger L with validity language V is the transaction sequence
reported by the honest party when it is given the instruction to read the current
transaction sequence.

Definition 26 (Confirmation). A transaction tx of ledger L is called confirmed by
honest party P at round r if tx ∈ LP [r]. We say that a transaction is confirmed at
round r if it is confirmed by all honest parties.

A good ledger protocol will exhibit two virtues: Persistence and Liveness. On
one hand, persistence mandates that the parties eventually come to agreement. On
the other hand, liveness mandates that transactions that occur eventually appear
in everyone’s view.

Definition 27 (Persistence). A ledger protocol L has persistence with parameter
λ (the persistence parameter) if for any two honest parties P1, P2 and two rounds
r1 ≤ r2 + λ, it holds LP1 [r1] ⪯ LP2 [r2].

Note that we do not require that the ledger views of the honest parties are equal,
but that, after sufficient time, they are a prefix of each other. The reason for this is
that, while both parties will eventually agree on their ledger view up to a point, each
may include a transaction at a later time. Until an honest party can be certain that
a transaction is confirmed and is ready to report it in a particular position within
its ledger view as stable, it will keep the transaction as unstable and not report it in
its view. The duration, in number of rounds, during which transactions can remain
unstable is known as the persistence parameter.

Definition 28 (Liveness). A ledger protocol L has liveness with parameter u (the
liveness parameter) if the following holds. If all honest parties in the system attempt
to include a transaction tx (which validly extends their ledger views) for all rounds
r, r + 1, · · · , r + u then, at any round r′ > r + u, any queried honest party P will
report tx ∈ LP [r′].
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Liveness ensures that transactions appear on the ledger views of honest parties.
The liveness parameter u denotes the duration for which a party has to wait until
a transaction is confirmed. When we develop our protocols and we require a trans-
action to appear in a ledger, this parameter will appear as waiting time to ensure
the transaction has taken its position to all honest parties’ ledgers.

We note that it is trivial to design a ledger protocol which has either liveness
or persistence, but not both. To achieve persistence without liveness, the honest
parties always return ϵ when their ledger views are read. This trivially satisfies
persistence, as the empty sequence as a prefix of itself. Liveness is not satisfied
because transactions are never confirmed. To achieve liveness without persistence,
the honest parties include transactions in their ledgers in the order they see them on
the network. This ensures transactions appear immediately, which achieves liveness,
but the ledgers of different parties will disagree about their contents and order, and
so persistence is lost. The challenge in creating a secure ledger will be to achieve
both properties.

Definition 29 (Secure ledger). A ledger L is called secure with parameters λ, u if
it has persistence with parameters λ and liveness with parameter u.

To solve the consensus problem and create a secure ledger protocol, the honest
parties must come to agreement and ensure that the adversary does not split their
views while including all transactions. In order to do that, we will allow parties
to vote on a transaction order. We will then utilize the majority of votes to arrive
at a conclusion. This requires us to introduce an additional assumption: That the
majority of parties are honest.

2.7.2 Proof-of-Work
In our decentralized systems in which the number of participants is unknown and
their channels remain unauthenticated, we will assume that the majority of the
population is honest [60]. This assumption is summarized in the following equation:

t ≤ (1− δ)(n− t)

This mandates that the number of adversarial parties t is less than the honest
parties n−t by a fraction determined by the parameter δ, the honest advantage. We
will refer to this model as the 1

2 -adversary. This assumption is generally necessary to
solve the consensus problem in polynomial time [120], although it can be temporarily
relaxed [9]. Throughout this work, we will assume that the honest majority holds
during all rounds.

In some cases, most notably in our constructions of Chapter 5, our results will
be limited to weaker adversaries that satisfy more stringent assumptions and are
bounded by 1

3 or 1
4 as defined below:

Definition 30 (Bounded adversaries). We say that a population has a ϕ-bounded
adversary (where ϕ typically takes the values of 1

2 ,
1
3 , or

1
4) for some 0 < ϕ ≤ 1

2 if

t

n
≤ (1− δ)ϕ
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Algorithm 15 The Proof-of-Work discovery algorithm
1: function powH,T,q(m)
2: for ctr ← 1 to q do
3: if H(m ∥ ctr) ≤ T then
4: return ctr
5: end if
6: end for
7: return ⊥
8: end function

The honest majority assumption denotes a 1
2 -bounded adversary. If the num-

ber of parties changes from round to round, the respective assumption must be
maintained throughout the whole execution.

While theoretically the honest majority assumption discusses population counts,
in practice this is translated into a majority in computational power. To achieve this
in our model, we bound the number of Random Oracle queries which are allowed
per party per round by some constant q > 0, which is the same for all parties.
Limited computational power is then captured by the limited number of queries to
the Random Oracle. As such, each honest party has q available queries per round,
for a total of (n− t)q queries per round, while the adversary has tq available queries
per round. We call this model the q-bounded model.

When working in the synchronous setting, we will set q to be some polynomial
of the security parameter. As the queries are counted per round, the model captures
the fact that up to q queries can be made prior to an honest party being able to
communicate the result of their query to the rest of the honest parties. In the
∆-bounded delay setting, we will simplify by setting q = 1, as the number of
queries allowed before a message reaches the rest of the network can be controlled
by adjusting ∆. Concretely, we note that a ∆-bounded delay setting with q > 1 is
captured by an equivalent model in which ∆′ = ∆+ q and q′ = 1.

The honest parties try to distinguish between messages diffused by the other
honest parties and the adversary. This is a form of voting. The parties vote on a
message m by solving the proof-of-work equation [52] which is defined as follows.

Definition 31 (Proof-of-Work). Consider a hash function H : {0, 1}∗ → {0, 1}κ
and some T ≤ 2κ. A nonce ctr ∈ {0, 1}∗ is called proof-of-work for message
m ∈ {0, 1}∗ against target T if the following inequality holds:

H(m ∥ ctr) ≤ T

If H is modelled as a Random Oracle, the best way to solve proof-of-work for a
previously unseen messagem is by brute force: iterate through all possible ctr values
until a solution is found. The message m must have sufficient entropy to ensure no
other party is looking for proof-of-work for the same message. The algorithm that
looks for a proof-of-work solution, given q queries available in a round, is illustrated
in Algorithm 15.

This makes the proof-of-work problem of finding a nonce a moderately hard
problem. In the extreme case where T = 1, the problem is computationally hard and
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lies in EXP, as it takes an exponential number of random oracle queries to find the
value required. On the other end, if T = 2κ−1, the problem is computationally easy
and lies in P, as only a single query is required to solve the problem in expectation.
When T takes a moderate value, the problem requires a moderate number of queries
until a solution is found. Crucially, the expected number of queries can be controlled
by adjusting the target parameter T . Proof-of-work has the property that it is
moderately hard to find, but once found it can be easily verified by checking that
the equation holds.

Definition 32 (Successful Query). We call a query to the Random Oracle that
satisfies the proof-of-work equation a successful query.

Lemma 5 (Successful Query). The probability of a new query being successful
p = T

2κ .

We now define the random variables Xr, Yr that specify whether a round was
successful and uniquely successful.

Definition 33. If an honest party has made a successful query during a round r,
then we call r a successful round and set Xr = 1; otherwise, we set Xr = 0. If
among the honest queries during r only one was successful, we call r a uniquely
successful round and we set Yr = 1; otherwise, we set Yr = 0.

It is of course possible that, in addition to the honest parties, the adversary
could have had successful queries during a successful or uniquely successful round.
The adversary can also succeed in rounds during which the honest parties were
unsuccessful. We let Zrj = 1 if during round r the jth adversarial query was
successful, where j ranges from 1 to tq; otherwise we let Zrj = 0. For a set of
rounds S, we define X(S) =

∑
r∈S Xr and Y (S) =

∑
r∈S Yr as well as Z(S) =∑

r∈S
∑tq

j=1 Zrj .
In reality, not every honest party has the same computational power, and mul-

tiple honest parties may combine their computational power into a so-called mining
pool. These can be captured by treating a more powerful honest party as multiple
honest parties each of which contributes q queries per round. This is made explicit
for the adversary, as she does not incur any network overhead to achieve communi-
cation between the t corrupted parties. On the contrary, honest players discovering
proof-of-work must diffuse it to the network at a given round and wait for it to be
received and validated by the rest of the honest players at the beginning of the next
round (or ∆ rounds later in the ∆-bounded delay model).

These random variables X,Y, Z have the following expected values. For all
rounds r:

• E[Xr] = 1− (1− p)q(n−t)

• E[Yr] = pq(n− t)(1− p)q(n−t−1)

• E[Zr] = pqt

The random variables Xr and Yr are Bernoulli distributed, while the random
variable Zr is Binomially distributed. The expectation for the adversary assumes
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that she makes use of all her available Random Oracle queries. As we will only
apply upper bounds to E[Zr], this is without loss of generality.

The expectation E[Xr] is a value critical for our protocols and will be denoted f
throughout this work. If f is too small, the proof-of-work problem is too hard and
there is no progress, harming liveness. If f is large, the proof-of-work problem is
too easy and the honest parties all solve proof-of-work simultaneously. In that case,
there are no intermittent periods of silence that honest parties can utilize to reach
agreement, and thus persistence is harmed. The parameter T must be carefully
calibrated according to n and q so that f takes a balanced value.

As rounds are independent, the expectations for E[X(S)], E[Y (S)], E[Z(S)] are
equal to |S|E[Xr], |S|E[Yr], and |S|E[Zr] respectively. If |S| is sufficiently large,
the actual values attained by E[X(S)], E[Y (S)], and E[Z(S)] will most likely be
near their expectation, except with some small error ϵ. This intuition is formally
captured by the notion of a typical query distribution:

Definition 34 (Typical Query Distribution). Let ϵ ∈ (0, 1) (the Chernoff error)
and integer λ ≥ 2

f (the wait time). Let S be a set of rounds with |S| ≥ λ. An
execution has (ϵ, λ)-typical query distribution if:

• (1− ϵ)E[X(S)] < X(S) < (1 + ϵ)E[X(S)]

• (1− ϵ)E[Y (S)] < Y (S)

• Z(S) < E[Z(S)] + ϵE[X(S)]

We are now ready to state the full honest majority assumption. Our assumption
requires that the honest majority gap δ is sufficient to account for both the Chernoff
error ϵ as well as the the lack of silence due to a potentially large parameter f .

Definition 35 (Honest Majority Assumption). We say that a population has honest
majority if

t ≤ (1− δ)(n− t)

where

δ > 3f + 3ϵ .

The honest majority assumption allows us to argue that the number of uniquely
successful queries of the honest parties are generally larger than the number of suc-
cessful queries of the adversary. This follows immediately if our query distribution
is typical and is formally proven in the Bitcoin Backbone series of papers [60, 61].

Throughout this work, we will be interested in executions in which our distribu-
tions behave nicely. We term these executions typical [60]. The properties we care
about pertain to the values attained by X,Y, Z as well as the collision-resistance
and unpredictability of the Random Oracle.

Definition 36 (Typical Execution). An execution is (ϵ, λ)-typical if it has an
(ϵ, λ)-typical query distribution and no collisions or predictions have occurred.

The following theorem is essential for our development and is proven in the
backbone series of papers [60, 61].
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Theorem 6 (Typicality). An execution is (ϵ, λ)-typical with overwhelming proba-
bility in ϵ2λ.

We introduce some additional definitions that are useful for ∆ delays. In the
∆-bounded delay model, periods of silence that corresponded to an honest party
succeeding in a uniquely successful round now correspond to a sequence of ∆ con-
secutive rounds at the beginning of which only one honest party is successful. The
intuitive reason is that the adversary can delay any other successful query diffusion
message within that same ∆ period and make the two messages coincide in the view
of receiving honest parties, causing disagreement. As such, a useful concept will be
to define an isolated (uniquely) successful round as a round that is (uniquely) suc-
cessful and is followed by a silence of duration ∆. We also introduce the respective
indicator random variables X ′i, Y ′i for ∆-isolated (uniquely) successful rounds.

Definition 37 (∆-isolated (Uniquely) Successful Round). A round r is a ∆-
isolated successful round if Xr = 1 and for all r < r′ < r+∆ it holds that Xr′ = 0.
In that case we set X ′r = 1; otherwise, we set X ′r = 0.

A round r is a ∆-isolated uniquely successful round if Yr = 1 and for all
r < r′ < r +∆ it holds that Xr′ = 0. In that case we set Y ′r = 1; otherwise, we set
Y ′r = 0.

These random variables have the following expectations for every round r:

• E[X ′r] = f(1− f)∆−1 ≥ f [1− (∆− 1)f ]

• E[Y ′r ] ≥ f(1− f)2∆−1 ≥ f [1− (2∆− 1)f ]

In this case, we also have to strengthen the honest majority assumption to
accommodate for the ∆ delay:

Definition 38 (∆ Honest Majority). We say that a population has honest majority
with wait time λ ∈ N under a ∆-bounded delay with wait if

t ≤ (1− δ)(n− t)

where

δ > 5(ϵ+ 2∆f +
2∆

f
) .

Typicality of queries is strengthened as follows:

Definition 39 (∆ Typical Query Distribution). An execution has (ϵ, λ,∆)-typical
query distribution with parameters ϵ ∈ (0, 1) (the Chernoff error), integer λ ≥ 2

f

(the wait time) and integer ∆ (the delay), if for any set of rounds S with |S| ≥ λ
it holds that:

• (1− ϵ)E[X ′(S)] < X ′(S), X(S) < (1 + ϵ)E[X(S)]

• (1− ϵ)E[Y ′(S)] < Y ′(s)

• Z(S) < E[Z(S)] + ϵE[X ′(S)]

Typical executions are then defined as before and the standard theorem holds:
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Theorem 7 (∆ Typicality). An execution is (ϵ, λ,∆)-typical with overwhelming
probability in ϵ2f2(1− f)4∆−2λ.

Before we get to ordering transactions, consider momentarily the classical prob-
lem of a one-bit agreement [97] known as the Byzantine Agreement problem. In the
Byzantine Agreement problem, each party boots up with one, potentially different,
input bit each, either 0 or 1, in its state. The parties wish to coordinate among each
other in order to output a single output bit. The protocol has agreement if all honest
parties always give output bits consistent with each other (i.e., if one honest party
outputs b, all do). The protocol has validity if, when all honest parties are given the
same input bit, the output bit matches the input bit. Agreement or validity alone
are easy to achieve. An example of a protocol that has only agreement asks all
parties to always output 0. An example of a protocol that has only validity asks all
parties to simply output their input. The challenge is to achieve both validity and
agreement. Contrary to the classical setting, our setting here is different, because
parties are anonymous, unauthenticated, and their count is unknown. As such, any
attempt by the honest parties to report their inputs and coordinate among each
other can be subverted by an adversary who injects messages that report honest-
looking input bits, perhaps differently to each party, splitting their view.

Instead, proof-of-work must be leveraged. One approach that doesn’t work, but
gives intuition about how proof-of-work can be leveraged is as follows. Initially, each
party boots with an input bit b. The party repeatedly attempts to find proof-of-
work solutions ctri for the message b ∥ ri where ri is sampled uniformly at random
from {0, 1}κ to ensure high entropy. Once some proof-of-work is found, the solution
b ∥ ri ∥ ctri is broadcast to the network and the process is repeated for as many
ri as possible. After λ rounds have passed, the parties look at the proof-of-work
solutions that have been diffused on the network throughout the execution and
count the votes for bit 0 and bit 1. If all honest parties are given the same input,
then they will all produce votes in favour of that input. In expectation, the count of
these votes will be more than whatever the adversary produces, thereby achieving
validity. However, agreement is not achieved because, if half the honest parties
are given input 0 and the other half are given input 1, the adversary can create
proof-of-work only in favour of the bit 0 and hand over that work only to half the
parties, causing disagreement. This lack of agreement hints towards the need to
chain proof-of-work, incorporating each previous solution as part of the message for
each future attempt, and continuously work on top of the most proof-of-work chain
that exists on the network, giving rise to blockchains. We describe this process in
the next section.

2.7.3 Chains and Ledgers
Blockchains are finite block sequences obeying the blockchain property: that in

every block in the chain there exists a pointer to its previous block. We denote a
blockchain (or simply chain) by C. A special block generated at the beginning of
the protocol execution called the genesis block G is known by all parties. Every
valid chain must begin with the genesis block. We call such a chain anchored.

Given chains C1,C2 and block B we concatenate them as C1C2 or C1B. C2[0]
must point to C1[−1] and B must point to C1[−1]. The id function on a block
returns the hash of the block header data id = H(ctr, x, h′).
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In blockchain protocols, each honest party P maintains a currently adopted
chain. We denote CP [t] the chain adopted by party P at slot t.

A ledger (denoted in bold-face, e.g. L) is a mechanism for maintaining a sequence
of transactions, often stored in the form of a blockchain.

We call a ledger state a concrete sequence of transactions tx1, tx2, . . . stored
in the stable part of a ledger L, typically as viewed by a particular party. Hence,
in every blockchain-based ledger L, every fixed chain C defines a concrete ledger
state by applying the interpretation rules given as a part of the description of L
(for example, the ledger state is obtained from the blockchain by dropping the last
k blocks and serializing the transactions in the remaining blocks). We maintain the
typographic convention that a ledger state (e.g. L) always belongs to the bold-face
ledger of the same name (e.g. L). We denote by LP [t] the ledger state of a ledger L
as viewed by a party P at the beginning of a time slot t, and by ĽP [t] the complete
state of the ledger (at time t) including all pending transactions that are not stable
yet.

For a ledger L that satisfies persistence at time t, we denote by L∪[t] (resp.
L∩[t]) the sequence of transactions that are seen as included in the ledger by at
least one (resp., all) of the honest parties. Finally, length(L) denotes the length of
the ledger L, i.e., the number of transactions it contains.

2.8 Blockchain Protocols

2.8.1 Blockchain Backbone
The Bitcoin protocol has been analyzed in a series of works [60, 61, 122, 15]. Here,
we give an overview.

The Bitcoin protocol for the synchronous static difficulty model is illustrated in
Algorithm 16. Every honest party runs the protocol. Each party maintains a chain
C which is initialized as the empty sequence 3. Each party uses its q Random Oracle
queries in each round in an attempt to mine a new block which extends its currently
adopted chain. The block points to the tip of the currently adopted blockchain and
contains any transactions that the party receives from its environment. We say that
the environment attempts to inject into the honest party, which, in turn, attempts
to place them on the newly mined block. The environment’s choice of transactions
here plays the role of the mempool.

When an honest party successfully finds a proof-of-work for its candidate block,
it appends that block to its adopted blockchain and broadcasts the new blockchain
to the network.

When it receives a blockchain from the network, it first checks to see if it is
valid. Validation involves checking that each of its blocks has proof-of-work, that it
has the blockchain property, and that its transaction sequences satisfies the validity
language. It adopts it if it has more blocks than its currently adopted chain. This
procedure, called maxvalid, is illustrated in Algorithm 17, where the valid predicate
ensures that a chain respects proof-of-work and its contents belong to the validity
language.

Chains maintained by honest parties running the backbone protocol in an honest
majority setting satisfy the following three properties.

3this is a formalism which in practice is replaced with a sequence starting with a well-known high
entropy block, the Genesis block G; the two formulations are theoretically equivalent
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Algorithm 16 The backbone protocol

1: C← ε
2: st← ε
3: round← 1
4: function Backbone(1λ)
5: C̃← maxvalid(C, any chain C′ received from the network)
6: ⟨st, x⟩ ← I(st, C̃, round, Input(),Receive())
7: Cnew ← pow(x, C̃)
8: if C ̸= Cnew then
9: C← Cnew
10: Diffuse(C)
11: else
12: Diffuse(⊥)
13: end if
14: round← round+ 1
15: end function

Algorithm 17 The maxvalid algorithm which chooses the longest valid chain
1: function maxvalid(C̃)
2: C← C[0]
3: for C′ ∈ C̃ do
4: if valid(C′) ∧ |C′| > |C| then
5: C← C′
6: end if
7: end for
8: return C
9: end function

The chain growth property states that the chain of an honest party will keep
growing at a certain rate α. Because honest parties always extend the longest chain,
this property holds even in executions of dishonest majority.

Definition 40 (Chain Growth). An execution has chain growth with parameters
α ∈ R (the chain velocity) and s ∈ N (the chunk size) if for all honest parties P
and for all rounds r the following holds. If P has adopted chain C at round r, then
for every round r′ > r + s the chain C′ adopted by P at round r′ satisfies:

|C′| ≥ |C|+ τs .

The chain quality property states that any large enough (≥ s) chunk of an
honestly adopted chain will always contain some (ρ) honest blocks.
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Definition 41 (Chain Quality). An execution has chain quality with parameters ρ
(the chain quality parameter) and ℓ ∈ N (the chunk size) if for all honest parties
P and for all rounds r during which the party has adopted chain C the following
holds. For any i, j such that |C[i : j]| = ℓ, the block set C′ = {B ∈ C[i:j] :
B was honestly generated} satisfies:

|C′|
ℓ
≥ ρ .

The common prefix property states that the chains of two honest parties cannot
deviate much. In particular, they will share a large common prefix and can only
differ by up to k blocks near their ends.

Definition 42 (Common Prefix). An execution has common prefix with parameter
k (the common prefix parameter) if for all honest parties P1, P2 and rounds r1 ≤ r2
the following holds. If P1 has adopted C1 during round r1 and P2 has adopted C2

during round r2, then:

C1[:− k] ⪯ C2 .

The next three theorems establish that these three properties hold in typical
executions and have been proven in the backbone series of papers. These theorems
hold in both the synchronous and the ∆-bounded delay network models [122] as
well as in the static [60] and variable difficulty settings [61]. We state them here
without proof.

In the synchronous model it holds that [60]:

Theorem 8 (Chain Growth). A typical execution satisfies Chain Growth with
velocity α = (1− ϵ)f and chunk size s ≥ λ.

Theorem 9 (Chain Quality). A typical execution satisfies Chain Quality with
quality ρ = 1− (1 + δ

2 )
t

n−t −
ϵ

1−ϵ and chunk size ℓ ≥ 2λf .

Theorem 10 (Common Prefix). A typical execution satisfies Common Prefix with
common prefix parameter k ≥ 2λf .

With the addition of a ∆-bounded delay it holds that [58]:

Theorem 11 (Chain Growth). A typical execution satisfies Chain Growth with
velocity α = (1− ϵ)f(1− f)∆−1 and chunk size s ≥ λ.

Theorem 12 (Chain Quality). A typical execution satisfies Chain Quality with
quality ρ = 1− 1

(1−ϵ)(1−f)∆
t

n−t −
e

1−ϵ (1 +
∆
λ ) and chunk size ℓ ≥ 2λf + 2∆f .

Theorem 13 (Common Prefix). A typical execution satisfies Common Prefix with
k ≥ 2λf + 2∆.

In the variable difficulty synchronous case it holds that [61]:

Theorem 14 (Chain Growth). A typical execution satisfies Chain Growth with
velocity α = (1− ϵ)f and chunk size s ≥ λ.

Theorem 15 (Chain Quality). A typical execution satisfies Chain Quality with
quality ρ = δ − 2ϵ− θf ≥ δ

2 . and chunk size ℓ ≥ θγm
8τ .
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Theorem 16 (Common Prefix). A typical execution satisfies Common Prefix with
k ≥ θγm

4τ .

Remark 4 (Impossibility of full semi-synchrony). Revisiting the ∆-bounded delay
model, a folklore observation that has not appeared in the litature is that blockchain
protocols are impossible to obtain in the fully semi-synchronous setting where no
conditions are imposed on ∆, because of the anonymous nature of the model. This
impossibility stems from the fact that n is unknown to the honest parties. To
see this, consider an honest majority execution in which an adversary controls
t = (1 − δ)(n − t) parties for some δ > 0. If the honest parties take a decision of
transaction acceptance within some time ∆, then that ∆ can be used as network
delay in which the messages of a percentage larger than δ of the honest parties are
delayed. That setting is then indistinguishable to the honest parties from a setting
in which the adversary controls the majority of the parties t > n − t, as there is
an honest percentage which is effectively eclipsed. This is the case regardless of
which solution is used to approach the problem of consensus – whether it is through
blockchains or other means. Standard dishonest majority attacks therefore become
possible avenues to break the protocol. Hence, the ∆-bounded delay setting in which
∆ is unknown but some conditions are imposed on it is the best possible model
we can hope for, as further relaxation would not allow for a solution, as long as
dishonest majority breaks the protocol. The model can only be improved by relaxing,
but not altogether removing, the conditions.

2.8.2 Ouroboros
The protocol operates (and was analyzed) in the synchronous model with semi-
adaptive corruptions. In each slot, each of the parties can determine whether she
qualifies as a so-called slot leader for this slot. The event of a particular party
becoming a slot leader occurs with a probability proportional to the stake controlled
by that party and is independent for two different slots. It is determined by a
public, deterministic computation from the stake distribution and so-called epoch
randomness (we will discuss shortly where this randomness comes from) in such a
way that for each slot, exactly one leader is elected.

If a party is elected to act as a slot leader for the current slot, she is allowed to
create, sign, and broadcast a block (containing transactions that move stake among
stakeholders). Parties participating in the protocol are collecting such valid blocks
and always update their current state to reflect the longest chain they have seen so
far that did not fork from their previous state by too many blocks into the past.

Multiple slots are collected into epochs, each of which contains R ∈ N slots.
The security arguments in [89] require R ≥ 10k for a security parameter k; we
will consider R = 12k as additional 2k slots in each epoch will be useful for our
construction. Each epoch is indexed by an index j ∈ N. During an epoch j, the
stake distribution that is used for slot leader election corresponds to the distribution
recorded in the ledger up to a particular slot of epoch j − 1, chosen in a way that
guarantees that by the end of epoch j − 1, there is consensus on the chain up to
this slot. (More concretely, this is the latest slot of epoch j − 1 that appears in the
first 4k out of its total R slots.) Additionally, the epoch randomness ηj for epoch
j is derived during the epoch j − 1 via a guaranteed-output delivery coin tossing
protocol that is executed by the epoch slot leaders, and is available after 10k slots
of epoch j − 1 have passed.
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In our treatment, we will refer to the relevant parts of the above-described
protocol as follows:

GetDistr(j) returns the stake distribution SDj to be used for epoch j, as recorded
in the chain up to slot 4k of epoch j − 1;

GetRandomness(j) returns the randomness ηj for epoch j as derived during epoch
j − 1;

ValidateConsensusLevel(C) checks the consensus-level validity of a given chain C:
it verifies that all block hashes are correct, signatures are valid and belong to
eligible slot leaders;

PickWinningChain(C, C) applies the chain-selection rule: from a set of chains {C}∪C
it chooses the longest one that does not fork from the current chain C more
than k blocks in the past;

SlotLeader(U, j, sl, SDj , ηj) determines whether a party U is elected a slot leader
for the slot sl of epoch j, given stake distribution SDj and randomness ηj .

Moreover, the function EpochIndex (resp. SlotIndex) always returns the index of
the current epoch (resp. slot), and the event NewEpoch (resp. NewSlot) denotes
the start of a new epoch (resp. slot). Since we use these functions in a black-box
manner, our construction can be readily adapted to PoS protocols with a similar
structure that differ in the details of these procedures.

Ouroboros was shown in [89] to achieve both persistence and liveness under
the following assumptions: (1) synchronous communication; (2) 2R-semi-adaptive
corruptions; (3) majority of stake in the stake distribution for each epoch is always
controlled by honest parties during that epoch.
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Chapter 3

Proofs of Proof-of-Work

In this chapter, we put forth a cryptographic security definition for Non-Interactive
Proofs of Proof-of-Work protocols which describes what such a synchronization
protocol must achieve. We then construct a protocol which solves the problem and
requires sending only a logarithmic number of blocks from the chain. We construct a
protocol which can synchronize recent blocks, a suffix proof protocol which we term
the charity NIPoPow. We analyze the security and succinctness of our protocol. We
show a simple addition to the suffix proofs protocol which allows synchronizing any
part of the blockchain that the client may be interested in, the infix proofs protocol.
We give formal proofs of security and succinctness, provide concrete parameters for
the implementation of our scheme, present applications beyond superlight clients
including cross-chain applications, propose a mechanism with which our scheme can
be deployed to existing cryptocurrencies without a fork.

In this chapter, we treat superblock NIPoPoWs in the synchronous and static
difficulty backbone setting. We relax both of these assumptions in Chapter 5.

3.1 Definitions
Extending the Backbone model. The entities on the blockchain network are
of 3 kinds: (1) Miners, who try to mine new blocks on top of the longest known
blockchain and broadcast them as soon as they are discovered. Miners commit new
transactions they receive from clients. (2) Full nodes, who maintain the longest
blockchain without mining and also act as the provers in the network. (3) Verifiers
or stateless clients, who do not store the entire blockchain, but instead connect to
provers and ask for proofs in regards to which blockchain is the largest. The verifiers
attempt to determine the value of a predicate on these chains, for example whether
a particular payment has been finalized.

Our main challenge is to design a protocol so that clients can sieve through the
responses they receive from the network and reach a conclusion that should never
disagree with the conclusion of a full node who is faced with the same objective and
infers it from its local blockchain state.

Blockchain blocks are generated by including the following data in them: ctr,
the nonce used to achieve the proof-of-work; x the Merkle tree [112] root of the
transactions confirmed in this block; and interlink [83], a vector containing pointers
to previous blocks, including the id of the previous block. The interlink data struc-
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ture contains pointers to more blocks than just the previous block. We will explain
this further in Section 3.2. Given two hash functions H and G modelled as random
oracles, the id of a block is defined as id = H(ctr,G(x, interlink)). In bitcoin’s case,
both H and G would be SHA256.
The prover and verifier model. In our protocol, the nodes include a proof along
with their responses to clients. We need to assume that clients are able to connect
to at least one correctly functioning node (i.e., that they cannot be eclipsed from
the network [67, 5]). Each client makes the same request to every node, and by
verifying the proofs the client identifies the correct response. Henceforth we will
call clients verifiers and nodes provers.

The prover-verifier interaction is parameterized by a predicate (e.g. “the trans-
action tx is committed in the blockchain”). The predicates of interest in our context
are predicates on the active blockchain. Some of the predicates are more suitable for
succinct proofs than others. We focus our attention in stable predicates having the
property that all honest miners share their view of them in a way that is updated
in a predictable manner, with a truth-value that persists as the blockchain grows
(an example of an unstable predicate is e.g., the least significant bit of the hash
of last block). Following the backbone work, we wait for k blocks to bury a block
before we consider it confirmed and thereby the predicates depending on it stable
(k is the common prefix parameter).

In our setting, for a given predicate Q, several provers (including adversarial
ones) will generate proofs claiming potentially different truth values for Q based on
their claimed local longest chains. The verifier receives these proofs and accepts one
of the proofs, determining the truth value of the predicate. We denote a blockchain
proof protocol for a predicate Q as a pair (P, V ) where P is the prover and V is the
verifier. P is a PPT algorithm that is spawned by a full node when they wish to
produce a proof, accepts as input a full chain C and produces a proof π as its output.
V is a PPT algorithm which is spawned at some round (having only Genesis),
receives a pair of proofs (πA, πB) from both an honest party and the adversary and
returns its decision d ∈ {T, F} before the next round and terminates. The honest
miners produce proofs for V using P , while the adversary produces proofs following
some arbitrary strategy. Before we introduce the security properties for blockchain
proof protocols we introduce some necessary notation for blockchains.

3.1.1 Provable chain predicates
Our aim is to prove statements about the blockchain, such as “The transaction tx
is included in the current blockchain” without transmitting all block headers. We
consider a general class of predicates that take on values true or false. Since a
Bitcoin-like blockchain can experience delays and intermittent forks, not all honest
parties will be in exact agreement about the entire chain. However, when all honest
parties are in agreement about the truth value of the predicate, we require that the
verifier also arrives at the same truth value.

To aid the construction of our proofs, we focus on predicates that aremonotonic;
they start with the value false and, as the blockchain grows, can change their value
to true but not back.

Definition 43. (Monotonicity) A chain predicate Q(C) is monotonic if for all
chains C and for all blocks B we have that Q(C)⇒ Q(CB).
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Figure 3.1: The truth value of a fixed predicate Q about the blockchain, as seen
from the point of view of 5 honest nodes, drawn on the vertical axis, over time,
drawn as the horizontal axis. The truth value evolves over time starting as false
at the beginning, indicated by a dashed red line. At some point in time t0, the
predicate is ready to be evaluated as true, indicated by the solid blue line. The
various honest nodes each realize this independently over a period of ηk duration,
shaded in gray. The predicate remains false for everyone before t0 and true for
everyone after t0 + ηk.

t0
t

t0 + ηk

node 1
node 2
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Additionally, we require that our predicates only depend on the stable portion
of the blockchain, blocks that are buried under k subsequent blocks. This ensures
that the value of the predicate will not change due to a blockchain reorganization.

Definition 44. (Stability) Parameterized by k ∈ N, a chain predicate Q is k-stable
if its value only depends on the prefix C[: −k].

3.1.2 Desired properties
We now define two desired properties of a non-interactive blockchain proof protocol,
succinctness and security.

Definition 45. (Security) A blockchain proof protocol (P, V ) about a predicate Q
is secure if for all environments and for all PPT adversaries A and for all rounds
r ≥ ηk, if V receives a set of proofs P at the beginning of round r, at least one of
which has been generated by the honest prover P , then the output of V at the end
of round r has the following constraints:

• If the output of V is false, then the evaluation of Q(C) for all honest parties
must be false at the end of round r − ηk.

• If the output of V is true, then the evaluation of Q(C) for all honest parties
must be true at the end of round r + ηk.

Some explanation is needed for the rationale of the above definition. The pa-
rameter η is borrowed from the Backbone [60] work and indicates the rate at which
new blocks are produced, i.e., the number of rounds needed on average to produce
a block. If the scheme is secure, this means that the output of the verifier should
match the output of a potential honest full node. However, in various executions,
not all potential honest full node behaviors will be instantiated. Therefore, we re-
quire that, if the output of the proof verifier is true then, consistently with honest
behavior, all other honest full nodes will converge to the value true. Conversely, if
the output of the proof verifier is false then, consistently with honest behavior, all
honest full nodes must have indicated false sufficiently long in the past. The period
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ηk is the period needed for obtaining sufficient confirmations (k) in a blockchain
system. A predicate’s value has the potential of being true as seen by an honest
party starting at time t0. Before time t0, all honest parties agree that the predicate
is false. It takes ηk time for all parties to agree that the predicate is true, which
is certain after time t0 + ηk. The adversary may be able to convince the verifier
that the predicate has any value during the period from t0 to t0+ηk. However, our
security definition mandates that before time t0 the verifier will necessarily output
false and after time t0 + ηk the verifier will necessarily output true.

Definition 46. (Succinctness) A blockchain proof protocol (P, V ) about a predicate
Q is succinct if for all PPT provers A, any proof π produced by A at some round
r, the verifier V only reads a O(polylog(r))-sized portion of π.

It is easy to construct a secure but not succinct protocol for any computable
predicate Q: The prover provides the entire chain C as a proof and the verifier
simply selects the longest chain: by the common-prefix property of the backbone
protocol (c.f. [60]), this is consistent with the view of every honest party (as long as
Q depends only on a prefix of the chain, as we explain in more detail shortly). In
fact this is how widely-used cryptocurrency clients (including SPV clients) operate
today.

It is also easy to build succinct but insecure clients: The prover simply sends
the predicate value directly. This is roughly what hosted wallets do [28].

The challenge we will solve is to provide a non-interactive protocol that at the
same time achieves security and succinctness over a large class of useful predicates.
We call this primitive a NIPoPoWs. Our particular instantiation for NIPoPoWs is
a superblock-based NIPoPoW construction.

3.2 Consensus layer support

3.2.1 The interlink pointers data structure
In order to construct our protocol, we rely on the interlink data structure [83]. This
is an additional hash-based data structure that is proposed to be included in the
header of each block. The interlink data structure is a skip-list [127] that makes it
efficient for a verifier to process a sparse subset of the blockchain, rather than only
consecutive blocks.

Valid blocks satisfy the proof-of-work condition: id ≤ T , where T is the mining
target. In this chapter, we work in the static difficulty, and so make the simplifying
assumption that T is constant. Some blocks will achieve a lower id. If id ≤ T

2µ we
say that the block is of level µ. All blocks are level 0. Blocks with level µ are called
µ-superblocks. µ-superblocks for µ > 0 are also (µ− 1)-superblocks. The level of a
block is given:

Definition 47 (Level). Let B be a valid block. Its level µ is defined as:

µ = level(B) = ⌊log(T )− log(id(B))⌋ .

By convention for Gen we set µ =∞.

Definition 48 (Superblock). A block of level µ is called a µ-superblock.
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Figure 3.2: The hierarchical blockchain. Higher levels have achieved a lower target
(higher difficulty) during mining. All blocks are connected to the genesis block G.

Observe that in a blockchain protocol execution it is expected 1/2 of the blocks
will be of level 1; 1/4 of the blocks will be of level 2; 1/8 will be of level 3; and
1/2µ blocks will be of level µ. In expectation, the number of superblock levels of
a chain C will be Θ(log(C)) [83]. Figure 3.2 illustrates the blockchain superblocks
starting from level 0 and going up to level 3 in case these blocks are distributed
exactly according to expectation. Here, each level contains half the blocks of the
level below.

We wish to connect the blocks at each level with a previous block pointer pointing
to the most recent block of the same level. These pointers must be included in the
data of the block so that proof-of-work commits to them. As the level of a block
cannot be prediced before its proof-of-work is calculated, we extend the previous
block id structure of classical blockchains to be a vector, the interlink vector. The
interlink vector points to the most recent preceding block of every level µ. Genesis
is of infinite level and hence a pointer to it is included in every block. The number
of pointers that need to be included per block is in expectation log(|C|).

The algorithm for this construction is shown in Algorithm 18 and is borrowed
from [83]. The interlink data structure turns the blockchain into a skiplist-like [127]
data structure.

The updateInterlink algorithm accepts a block B′, which already has an interlink
data structure defined on it. The function evaluates the interlink data structure
which needs to be included as part of the next block. It copies the existing interlink
data structure and then modifies its entries from level 0 to level(B′) to point to the
block B′.

Algorithm 18 updateInterlink
1: function updateInterlink(B′)
2: interlink← B′.interlink
3: for µ = 0 to level(B′) do
4: interlink[µ]← id(B′)
5: end for
6: return interlink
7: end function

We will only care about whether a block contains a pointer to a previous block,
not the positions of these pointers within the block. An optimization we can read-
ily perform on this algorithm is to treat the interlink vector as a set and remove
duplicates, as illustrated in Algorithm 19. This optimization achieves a constant
saving of about 50% in expectation [77].
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Algorithm 19 The updateInterlinkSet algorithm which updates the interlink set
1: function updateInterlinkSet(B′)
2: interlinkSet← {H(B′)}
3: for H(B) ∈ B′.interlink do
4: if level(B) > level(B′) then
5: interlinkSet← interlinkSet ∪ {H(B)}
6: end if
7: end for
8: return interlinkSet
9: end function

Traversing the blockchain. As we have now extended blocks to contain multiple
pointers to previous blocks, if certain blocks are omitted from the middle of a chain
we will obtain a subchain, as long as the blockchain property is maintained (i.e., that
each block must contain an interlink pointer to its previous block in the sequence).

Blockchains are sequences, so we will use the set notation defined in Chapter 1.
We note that, when manipulating blockchains in this manner, it is important to
remember when the blockchain property is maintained. In particular, C1 ∪ C2 and
C1 ∩ C2 as well as chains filtered through set-builder notation, while sequences of
blocks, may not always be chains since pointers may be missing. If C1[0] = C2[0]
and C1[−1] = C2[−1], we say the chains C1,C2 span the same block range.

Definition 49 (Lowest Common Ancestor). The lowest common ancestor of chains
C1, C2 is defined as

LCA(C1,C2) = (C1 ∩ C2)[−1] .

It will soon become clear that it is useful to construct a chain containing only
the superblocks of another chain.

Definition 50 (Upchain). Given C and level µ, the upchain C↑µ is defined as
{B ∈ C : level(B) ≥ µ}.

A chain containing only µ-superblocks is called a µ-superchain. It is also useful,
given a µ-superchain C′ to go back to the regular chain C. Given chains C′ ⊆ C,
the downchain C′↓ C is defined as C{C′[0]:C′[−1]}. C is the underlying chain of C′.
The underlying chain is often implied by context, so we will simply write C′↓ . By
the above definition, the C↑ operator is idempotent: (C↑µ)↑µ= C↑µ. Given a set
of consecutive rounds S = {r, r + 1, · · · , r + j} ⊆ N, we define CS = {B ∈ C :
B was generated during S}.

To aid readability, we define the chain filtering operators ↑, [·], and {·} to have
a higher precedence than ∪,∩.

3.3 Non-interactive blockchain suffix proofs
In this section, we introduce our non-interactive suffix proofs. With foresight, we
caution the reader that the non-interactive construction we present in this section
is insecure. A small patch will later allow us to modify our construction to achieve
security.
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We allow provers to prove general predicates Q about the chain C. Among the
predicates which are stable, in this section, we will limit ourselves to suffix sensitive
predicates. We extend the protocol to support more flexible predicates (such as
transaction inclusion, as needed for our applications) which are not limited to the
suffix in Section 3.5.

Definition 51 (Suffix sensitivity). A chain predicate Q is called k-suffix sensitive
if its value can be efficienty computed given the last k blocks of the chain.

Example. In general our applications will require predicates that are not suffix-
sensitive. However, as an example, consider the predicate “an Ethereum contract at
address C has been initialized with code h at least k blocks ago” where h does not
invoke the selfdestruct opcode. This can be implemented in a suffix-sensitive way
because, in Ethereum, each block includes a Merkle Trie over all of the contract
codes [35, 151], which cannot be changed after initialization. This predicate is
thus also monotonic and k-stable. Any predicate which is both suffix-sensitive and
k-stable must solely depend on data at block C[−k].

3.3.1 Construction
We next present a generic form of the verifier first and the prover afterwards. The
generic form of the verifier works with any practical suffix proof protocol. Therefore,
we describe the generic verifier first before we talk about the specific instantiation
of our protocol. The generic verifier is given access to call a protocol-specific proof
comparison operator ≤m that we define. We begin the description of our protocol
by first illustrating the generic verifier. Next, we describe the prover specific to our
protocol. Finally, we show the instantiation of the ≤m operator, which plugs into
the generic verifier to make a concrete verifier for our protocol.
The generic verifier. The Verify function of our NIPoPoW construction for suffix
predicates is described in Algorithm 20. The verifier algorithm is parameterized
by a chain predicate Q and security parameters k,m; k pertains to the amount of
proof-of-work needed to bury a block so that it is believed to remain stable (e.g.,
k = 6); m is a security parameter pertaining to the prefix of the proof, which
connects the genesis block to the k-sized suffix. The verifier receives several proofs
by different provers in a collection of proofs P at least one of which will be honest.
Iterating over these proofs, it extracts the best.

Each proof is a chain. For honest provers, these are subchains of the adopted
chain. Proofs consist of two parts, π and χ; πχ must be a valid chain; χ is the proof
suffix; π is the prefix. We require |χ| = k. For honest provers, χ is the last k blocks
of the adopted chain, while π consists of a selected subset of blocks from the rest
of their chain preceding χ. The method of choice of this subset will become clear
soon.
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Algorithm 20 The Verify algorithm for the NIPoPoW protocol
1: function VerifyQm,k(P)
2: π̃ ← (Gen) ▷ Trivial anchored blockchain
3: for (π, χ) ∈ P do ▷ Examine each proof (π, χ) in P
4: if validChain(πχ) ∧ |χ| = k ∧ π ≥m π̃ then
5: π̃ ← π
6: χ̃← χ ▷ Update current best
7: end if
8: end for
9: return Q̃(χ̃)
10: end function

The verifier compares the proof prefixes provided to it by calling the ≥m opera-
tor. We will get to the operator’s definition shortly. Proofs are checked for validity
before comparison by ensuring |χ| = k and calling validChain which checks if πχ is
an anchored blockchain.

At each loop iteration, the verifier compares the next candidate proof prefix π
against the currently best known proof prefix π̃ by calling π ≥m π̃. If the candidate
prefix is better than the currently best known proof prefix, then the currently known
best prefix is updated by setting π̃ ← π. When the best known prefix is updated,
the suffix χ̃ associated with the best known prefix is also updated to match the
suffix χ of the candidate proof by setting χ̃ ← χ. While χ̃ is needed for the final
predicate evaluation, it is not used as part of any comparison, as it has the same
size k for all proofs. The best known proof prefix is initially set to (Gen), the trivial
anchored chain containing only the genesis block. Any well-formed proof compares
favourably against the trivial chain.

After the end of the for loop, the verifier will have determined the best proof
(π̃, χ̃). We will later prove that this proof will necessarily belong to an honest prover
with overwhelming probability. Since the proof has been generated by an honest
prover, it is associated with an underlying honestly adopted chain C. The verifier
then extracts the value of the predicate Q on the underlying chain. Note that,
because the full chain is not available to the verifier, the verifier here must evaluate
the predicate on the suffix. Because the predicate is suffix-sensitive, it is possible
to do so. As a technical detail, we denote Q̃ the predicate which accepts only a
k-suffix of a blockchain and outputs the same value that Q would have output if it
had been evaluated on a chain with that suffix.
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Algorithm 21 The Prove algorithm for the NIPoPoW protocol
1: function Provem,k(C)
2: B ← C[0] ▷ Genesis
3: for µ = |C[−k − 1].interlink| down to 0 do
4: α← C[: −k]{B :}↑µ
5: π ← π ∪ α
6: if m < |α| then
7: B ← α[−m]
8: end if
9: end for
10: χ← C[−k :]
11: return πχ
12: end function

The concrete prover. The NIPoPoW prover construction is shown in Algo-
rithm 21. The honest prover is supplied with an honestly adopted chain C and
security parameters m, k and returns proof πχ, which is a chain. The suffix χ is
the last k blocks of C. The prefix π is constructed by selecting various blocks from
C[: −k] and adding them to π, which consists of a number of blocks for every level
µ from the highest level |C[−k].interlink| down to 0. At the highest possible level
at which at least m blocks exist, all these blocks are included. Then, inductively,
for every superchain of level µ that is included in the proof, the suffix of length m
is taken. Then the underlying superchain of level µ − 1 spanning from this suffix
until the end of the blockchain is also included. All the µ-superblocks which are
within this range of m blocks will also be (µ − 1)-superblocks and so we do not
want to keep them in the proof twice (we use the union set notation to indicate
this). Each underlying superchain will have 2m blocks in expectation and always
at least m blocks. This is repeated until level µ = 0 is reached. Note that no check
is necessary to make sure the top-most level has at least m blocks, even though the
verifier requires this. The reason is the following: Assume the blockchain has at
least m blocks in total. Then, when a superchain of level µ has less than m blocks
in total, these blocks will all be necessarily included into the proof by a lower-level
superchain µ − i for some i > 0. Therefore, it does not hurt to add them to π
earlier.

Figure 3.3 contains an example proof constructed for parameters m = k = 3.
The top superchain level which contains at least m blocks is level µ = 2. For the
m-sized suffix of that level, 6 blocks of superblock level 1 are included to span the
same range (2m blocks at this level). For the last 3 blocks of the 1-superchain,
blocks of level 0 spanning the same range are included (again 2m blocks at this
level). Note that the superchain at a lower levels may reach closer to the end of
the blockchain than a higher level. Level 3 was not used, as it does not yet have a
sufficient number of blocks.
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Figure 3.3: NIPoPoW prefix π for m = 3. It includes the Genesis block G, three
2-superblocks, six 1-superblocks, and six 0-blocks.
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Algorithm 22 The algorithm implementation for the ≥m operator to compare two
proofs in the NIPoPoW protocol parameterized with security parameterm. Returns
true if the underlying chain of player A is deemed longer than the underlying chain
of player B.
1: function best-argm(π, b)
2: M ← {µ : |π↑µ {b :}| ≥ m} ∪ {0} ▷ Valid levels
3: return maxµ∈M{2µ · |π↑µ {b :}|} ▷ Score for level
4: end function
5: operator πA ≥m πB

6: b← (πA ∩ πB)[−1] ▷ LCA
7: return best-argm(πA, b) ≥ best-argm(πB , b)
8: end operator

The concrete verifier. The ≥m operator which performs the comparison of proofs
is presented in Algorithm 22. It takes proofs πA and πB and returns true if the first
proof is winning, or false if the second is winning. It first computes the LCA block
b between the proofs. As parties A and B agree that the blockchain is the same
up to block b, arguments will then be taken for the diverging chains after b. An
argument is a subchain of a proof provided by a prover such that its blocks are after
the LCA block b and they are all at the same level µ. The best possible argument
from each player’s proof is extracted by calling the best-argm function. To find the
best argument of a proof π given b, best-argm collects all the indices µ which point
to superblock levels that contain valid arguments after block b. Argument validity
requires that there are at least m µ-superblocks following block b, which is captured
by the comparison |π↑µ {b :}| ≥ m. 0 is always considered a valid level, regardless
of how many blocks are present there. These level indices are collected into set
M . For each of these levels, the score of their respective argument is evaluated by
weighting the number of blocks by the level as 2µ|π↑µ {b :}|. The highest possible
score across all levels is returned. Once the score of the best argument of both A
and B is known, they are directly compared and the winner returned. An advantage
is given to the first proof in case of a tie by making the ≥m operator favour the
adversary A.

Looking ahead, the core of the security argument will be that, given a block b, it
will be difficult for a mining minority adversary to produce blocks descending from
b faster than the honest party. This holds for blocks of any level.
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3.4 Analysis
We now give a sketch indicating why our construction is secure. The fully formal
security proof, together with a detail in the construction which ensures statistical
goodness and is necessary for withstanding full 1/2 adversaries, appears in the later
sections.

Theorem 17 (Security). Assuming honest majority, the Non-interactive Proofs
of Proof-of-Work construction for computable k-stable monotonic suffix-sensitive
predicates is secure with overwhelming probability in κ.

Sketch. Suppose an adversary produces a proof πA and an honest party produces
a proof πB such that the two proofs cause the predicate Q to evaluate to different
values, while at the same time all honest parties have agreed that the correct value
is the one obtained by πB . Because of Bitcoin’s security, A will be unable to make
these claims for an actual underlying 0-level chain.

We now argue that the operator ≤m will signal in favour of the honest parties.
Suppose b is the LCA block between πA and πB . If the chain forks at b, there can
be no more adversarial blocks after b than honest blocks after b, provided there
are at least k honest blocks (due to the Common Prefix property). We will now
argue that, further, there can be no more disjoint µA-level superblocks than honest
µB-level superblocks after b.

To see this, let b be an honest block generated at some round r1 and let the
honest proof be generated at some round r3. Then take the sequence of consecutive
rounds S = (r1, · · · , r3). Because the verifier requires at least m blocks from each
of the provers, the adversary must have m µA-superblocks in πA{b :} which are
not in πB{b :}. Therefore, using a negative binomial tail bound argument, we see
that |S| must be long; intuitively, it takes a long time to produce a lot of blocks
|πA{b :}|. Given that |S| is long and that the honest parties have more mining
power, they must have been able to produce a longer πB{b :} argument (of course,
this comparison will have the superchain lengths weighted by 2µA , 2µB respectively).
To prove this, we use a binomial tail bound argument; intuitively, given a long time
|S|, a lot of µB-superblocks |πB{b :}| will have been honestly produced.

We therefore have a fixed value for the length of the adversarial argument, a
negative binomial random variable for the number of rounds, and a binomial random
variable for the length of the honest argument. By taking the expectations of the
above random variables and applying a Chernoff bound, we see that the actual
values will be close to their means with overwhelming probability, completing the
proof.

We formalize the above proof sketch in the next sections.
Lastly, the following theorem illustrates that our proofs are succinct. Intuitively,

the number of levels exchanged is logarithmic in the length of the chain, and the
number of blocks in each level is constant. The formal proofs are included in the
next section.

Theorem 18 (Optimistic succinctness). In an optimistic execution, Non-Interactive
Proofs of Proof-of-Work produced by honest provers are succinct with the number
of blocks bounded by 4m log(|C|), with overwhelming probability in m.
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3.5 Non-interactive blockchain infix proofs
In the main body we have seen how to construct proofs for suffix predicates. As
mentioned, the main purpose of that construction is to serve as a stepping stone
for the construction of this section that presents a more useful class of proofs. This
class of proofs allows proving more general predicates that can depend on multiple
blocks even buried deep within the blockchain.

More specifically, the generalized prover for infix proofs allows proving any pred-
icate Q(C) that depends on a number of blocks that can appear anywhere within
the chain (except the k suffix for stability). These blocks constitute a subset C′ of
blocks, the witness, which may not necessarily form a chain. This allows proving
useful statements such as, for example, whether a transaction is confirmed. We
next formally define the class of predicates that will be of interest.

Definition 52 (Infix sensitivity). A chain predicate Qd,k is infix sensitive if it can
be written in the form

Qd,k(C) =

{
true, if ∃C′ ⊆ C[: −k] : |C′| ≤ d ∧D(C′)
false, otherwise

where D is an arbitrary efficiently computable predicate such that, for any block
sets C1 ⊆ C2 we have that D(C1)→ D(C2).

Note that C′ is a blockset and may not necessarily be a blockchain. Furthermore,
observe that for all blocksets C′ ⊆ C we have that Q(C′)→ Q(C). This will allow us
to later argue that adding more blocks to a blockchain cannot invalidate its witness.

Similarly to suffix-sensitive predicates, infix-sensitive predicates Q can be eval-
uated very efficiently. Intuitively this is possible because of their localized nature
and dependency on the D(·) predicate which requires only a small number of blocks
to conclude whether the predicate should be true.
Example. We next show how to express the predicate that asks whether a certain
transaction with id txid has been confirmed as an infix sensitive predicate. We de-
fine the predicate Dtxid that receives a single block and tests whether a transaction
with id txid is included. The predicate Qtxid

1,k is defined as in Definition 52 using
the predicate Dtxid and the parameter k which in this case determines the desired
stability of the assertion that txid is included (e.g., k = 6). Q alone proves that a
particular block is included in the blockchain. Some auxiliary data is supplied by
the prover to aid the provability of transaction inclusion: the Merkle Tree proof-of-
inclusion path to the transactions Merkle Tree root, similar to an SPV proof. This
data is logarithmic in the number of transactions in the block and, hence, constant
with respect to blockchain size. In case of a vendor awaiting transaction confirma-
tion to ship a product, the proof that a certain transaction paid into a designated
address for the particular order is sufficient. In this scheme it is impossible to de-
termine whether the money has subsequently been spent in a future block, and so
must only be used by the vendor holding the respective secret keys.

In the above example, note that if the verifier outputs false, this behavior will
generally be inconclusive in the sense that the verifier could be outputting false
either because the payment has not yet been confirmed or because the payment
was never made.
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Figure 3.4: An infix proof descend. Only blue blocks are included in the proof.
Blue blocks of level 4 are part of π, while the blue blocks of level 1 through 3 are
produced by followDown to get to the block of level 0 which is part of C′.
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Algorithm 23 The Prove algorithm for infix proofs
1: function ProveInfixm,k(C, C′, height)
2: aux← ∅
3: (π, χ)← Provem,k(C) ▷ Start with a suffix proof
4: for B ∈ C′ do
5: for E ∈ π do
6: if height[E] ≥ height[B] then
7: aux← aux ∪ followDown(E,B, height)
8: break
9: end if
10: end for
11: end for
12: return (aux ∪ π, χ)
13: end function

3.5.1 Construction
The construction of these proofs is shown in Algorithm 23. The infix prover accepts
two parameters: The chain C which is the full blockchain and C′ which is a sub-
blockset of the blockchain and whose blocks are of interest for the predicate in
question. The prover calls the previous suffix prover to produce a proof as usual.
Then, having the prefix π and suffix χ of the suffix proof in hand, the infix prover
adds a few auxiliary blocks to the prefix π. The prover ensures that these auxiliary
blocks form a chain with the rest of the proof π. Such auxiliary blocks are collected
as follows: For every block B of the subset C′, the immediate previous (E′) and
next (E) blocks in π are found. Then, a chain of blocks R which connects E back
to B is found by the algorithm followDown. If E′ is of level µ, there can be no
other µ-superblock between B and E′, otherwise it would have been included in π.
Therefore, B already contains a pointer to E′ in its interlink, completing the chain.

The way to connect a superblock to a previous lower-level block is implemented
in Algorithm 24. Block B′ cannot be of higher or equal level than E, otherwise it
would be equal to E and the followDown algorithm would return. The algorithm
proceeds as follows: Starting at block E, it tries to follow a pointer to as far as
possible. If following the pointer surpasses B, then the procedure at this level is

105



aborted and a lower level is tried, which will cause a smaller step within the skiplist.
If a pointer was followed without surpassing B, the operation continues from the
new block, until eventually B is reached, which concludes the algorithm.

Algorithm 24 The followDown function which produces the necessary blocks to
connect a superblock E to a preceeding regular block B.
1: function followDown(E, B, height)
2: aux← ∅; µ← level(E)
3: while E ̸= B do
4: B′ ← blockById[E.interlink[µ]]
5: if height[B′] < height[B] then
6: µ← µ− 1
7: else
8: aux← aux ∪ {E}
9: E ← B′

10: end if
11: end while
12: return aux
13: end function

An example of the output of followDown is shown in Figure 3.4. This is a portion
of the proof shown at the point where the superblock levels are at level 4. A descend
to level 0 was necessary so that a regular block would be included in the chain. The
level 0 block can jump immediately back up to level 4 because it has a high-level
pointer.

The verification algorithm must then be modified as in Algorithm 25.
The algorithm works by calling the suffix verifier. It also maintains a blockDAG

collecting blocks from all proofs (it is a DAG because interlink can be adversarially
defined in adversarially mined blocks). This DAG is maintained in the blockById
hashmap. Using it, ancestors uses simple graph search to extract the set of ancestor
blocks of a block. In the final predicate evaluation, the set of ancestors of the
best blockchain tip is passed to the predicate. The ancestors are included to avoid
an adversary who presents an honest chain but skips the blocks of interest. In
particular, such an adversary would work by including a complete suffix proof,
but “forgetting” to include the blocks generated by followDown for the infix proof
pertaining to blocks in C′.
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Algorithm 25 The verify algorithm for the NIPoPoW infix protocol
1: function ancestors(B, blockById)
2: if B = Gen then
3: return {B}
4: end if
5: C← ∅
6: for id ∈ B.interlink do
7: if id ∈ blockById then
8: B′ ← blockById[id]
9: C← C ∪ ancestors(B′, blockById) ▷ Collect into DAG
10: end if
11: end for
12: return C ∪ {B}
13: end function
14: function verify-infxDℓ,m,k(P)
15: blockById← ∅
16: for (π, χ) ∈ P do
17: for B ∈ π do
18: blockById[id(B)]← B
19: end for
20: end for
21: π̃ ← best π ∈ P according to suffix verifier
22: return D(ancestors(π̃[−1], blockById))
23: end function

3.6 Implementation & Parameters
We now discuss the size of NIPoPoW proofs and evaluate concrete parameters.
Organizing the interlink data structure as a Merkle tree of log(|C|) items, a proof-
of-inclusion is provided in log log(|C|) space in expectation; the proof need not
include 0-level pointers, but must include the genesis block. Transaction inclusion1
can be proved in the block header in log(|x|) using the standard Merkle tree of
transactions, where x denotes the vector of all transactions included in the particular
block. This makes the proof size require log(|x|) + log log(|C|) hashes per block
for a total of (2m(log |C| − logm) + m)(log |x| + log log |C|) hashes. In addition,
m(log(|C|)− log(m)) headers and coinbase transactions are needed. As an example,
given that currently in bitcoin |C| = 464,185 and |x| = 2000, we have log(|C|) =
18, log log(|C|) = 5, log(|x|) = 11. For the k-suffix, only k headers are needed. We
set k = 6 and see that headers are 80 bytes and hashes 32 bytes. For the k-suffix
as well as the 2m 0-blocks in π, neither coinbase data nor prev ids are needed,
limiting header size to 48 bytes. The root and leaves of the pointers tree can be
omitted from coinbase when transmitting the proof. In fact, no block ids need to
be transmitted. From these observations, we estimate our scheme’s proof sizes for
various parameterizations of m in Table 3.1.
Concrete parameterization. To determine concrete values for security parame-
ter m, we focus on a particular adversarial strategy and analyze its probability of

1This additional data is needed if a soft or hard fork is to be avoided. For more information about
gradual deployment, consult the relevant section on Deployment Paths.
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Table 3.1: Size of NIPoPoWs applied to Bitcoin today (≈450k blocks) for various
values of m, setting k = 6.

m NIPoPoW size Blocks Hashes
6 70 kB 108 1440
15 146 kB 231 2925
30 270 kB 426 5400
50 412 kB 656 8250
100 750 kB 1206 15000
127 952 kB 1530 19050

success. The attack is an extension of the stochastic processes described in [116]
and [133].

The experiment works as follows: m is fixed and some adversarial computational
power percentage q of the total network computational power is chosen; k is chosen
based on q according to Nakamoto [116]. The number of blocks y during which
parallel mining will occur is also fixed. The experiment begins with the adversary
and honest parties sharing a common blockchain which ends in block B. After
B is mined, the adversary starts mining in secret and in parallel with the honest
parties on her own private fork on top of B. She ignores the honest chain, so
that the two chains remain disjoint after B. As soon as y blocks have been mined
in total, the adversary attempts a double spend via a NIPoPoW by creating two
conflicting transactions which are committed to an honest block and an adversarial
block respectively on top of each current chain. Finally, the adversary mines k
blocks on top of the double spending transaction within her private chain. After
these k blocks have been mined, she publishes her private chain in an attempt to
overcome the honest chain.

We measure the probability of success of this attack. We experiment with various
values of m for y = 100, indicating 100 blocks of secret parallel mining. We make
the assumption that honest party communication is perfect and immediate. We ran
1,000,000 Monte Carlo executions2 of the experiment for each value of m from 1 to
30. We ran the simulation for values of computational power percentage q = 0.1,
q = 0.2 and q = 0.3. The results are plotted in Figure 3.5. Based on these data, we
conclude that m = 5 is sufficient to achieve a 0.001 probability of failure against an
adversary with 10% mining power. To secure against an adversary with more than
30% mining power, a choice of m = 15 is needed.

3.7 Evaluation & Applications
In this section we evaluate the cost of NIPoPoWs when used in realistic blockchain
applications. First we simulated the resources savings resulting from the use of a
NIPoPoW-based client compared to ordinary SPV. We model the arrival of pay-
ments in each cryptocurrency as a Poisson process and assume that the market
cap of a cryptocurrency is a proxy for usage. Currently, a total of 731 crypto-
currencies are listed on coin market directories3. We narrow our focus to the 80

2Our experiment can be reproduced by running our code available under an open source MIT license
at https://github.com/dionyziz/popow/tree/master/experiment

3https://coinmarketcap.com/
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Figure 3.5: Simulation results for a private mining attacker with k according to
Nakamoto and parallel mining parameter y = 100. Probabilities in logarithmic
scale. The horizontal line indicates the threshold probability of [116].

Table 3.2: Cost of header chains for all active PoW-based cryptocoins (collected
from coinwarz.com)

Hash Coins Size today Growth rate
Scrypt 44 4.3 GB 5.5 MB / day
SHA-256 15 1.4 GB 937.0 kB / day
X11 5 581.1 MB 556.3 kB / day
Quark 3 647.9 MB 518.4 kB / day
CryptoNight 2 199.0 MB 115.2 kB / day
EtHash 2 588.6 MB 921.6 kB / day
Groestl 2 300.3 MB 184.2 kB / day
NeoScrypt 2 310.6 MB 153.6 kB / day
Others 5 266.2 MB 311.1 kB / day
Total 80 8.5 GB 9.2 MB / day

cryptocurrencies that have their own PoW blockchains with a market cap of over
USD $100,000.

In Table 3.2 we show aggregate statistics about these 80 cryptocurrencies, grouped
according to the their PoW puzzle. While the entire chain in Bitcoin only amounts
to 40 MB, taken together, the 80 cryptocurrencies comprise 10 GB of proofs-of-work,
and generate 10 MB more each day. In Table 3.3 we show the resulting bandwidth
costs from simulating a period of 60 days with m = 24, k = 6, with varying rates
of payments received. For the naïve SPV client, the total bandwidth cost is dom-
inated by fetching the entire chain of headers, which the NIPoPoW client avoids.
The marginal cost for naïve SPV depends on the number of blocks generated per
day, as well as the transaction inclusion proofs associated with each payment. The
NIPoPoW-based client provides the most savings when the number of transactions
per day is smallest, reducing the necessary bandwidth per day (excluding the initial
sync up) by 90%.
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Table 3.3: Simulated bandwidth of multi-blockchain clients after two months (Av-
eraged over 10 trials each)

tx/ Naive SPV NIPoPoW
day Total (Daily) Total (Daily) Savings
100 5.5 GB(5.5 MB) 31.7 MB(507 kB) 99% (91%)
500 5.5 GB(5.7 MB) 68.2 MB(1.1 MB) 99% (81%)
1000 5.5 GB(6.0 MB) 99.1 MB(1.6 MB) 98% (73%)
3000 5.6 GB(7.0 MB) 192 MB (3.1 MB) 97% (56%)

Multi-blockchain wallets. An application of our technique is an efficient multi-
cryptocoin client. Consider a merchant who wishes to accept payments in any
cryptocoin, not just the popular ones. The naïve approach would be to install an
SPV client for each known coin. This approach would entail downloading the header
chain for each coin, and periodically syncing up by fetching any newly generated
block headers. An alternative would be to use an online service supporting multiple
currencies, but this introduces reliance on a third party (e.g. Jaxx and Coinomi
rely on third party networks).

A NIPoPoW-based client would not download the entire header chain, but would
instead only receive NIPoPoW proofs each time a payment is received. When a peer
informs the client about a payment, they include a block index ℓ and NIPoPoW
proof of transaction inclusion. The peer must then query all of their connected
peers, requesting any better proof for the same predicate. After waiting a short
time period for a response, the client runs the verify-infix routine on all received
proofs, and accepts the transaction if the output is true. Although initially such
proofs must be relative to genesis, the client may store the most recently-known
(k-stable) blockhash for each coin such that future payments can include NIPoPoW
proofs relative to that. Thus for popular cryptocurrencies, the NIPoPoW-based
client downloads nearly every block header, like an ordinary SPV client; but for
coins used infrequently, the NIPoPoW-based client can skip over most blocks.
Cross-chain ICOs. As an example use-case of our construction, we present the
case of an ICO in which tokens are distributed in one blockchain, but funds are raised
in another. It works as follows: There are two designated blockchains, the source
and the destination blockchain. The source is the blockchain where the fund-raising
will take place, while the destination is the blockchain where the newly issued tokens
will be distributed and subsequently exchanged. The destination blockchain must be
smart-contract-enabled in order to allow for the distribution of ERC-20-style [150]
tokens. In addition, the smart contracts on the destination blockchain must allow
for programming the verification of a NIPoPoW proof by including, for example,
the appropriate hash functions. The source blockchain must be NIPoPoW-enabled.
This setup allows the creation of NIPoPoWs about the source blockchain which will
be included in the destination blockchain. For example, a source blockchain can be
Litecoin and a destination blockchain Ethereum.

In order to run the ICO, the fund-raising entity first creates a designated account
in the source blockchain in which funds will be deposited. It then creates the ERC-
20-style smart contract in the destination blockchain. When someone wishes to
participate in the ICO, they transfer funds into the designated account on the
source blockchain. Once they have made the transfer and it becomes confirmed,
the payer generates a NIPoPoW about the transaction paying into the designated
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account. This NIPoPoW is then sent as a parameter to a method call on the
ICO smart contract on the destination blockchain. The method call stores the
proof and waits for a certain period of time for possible contestations, which can
be accepted and compared using the ≤m mechanism previously described. If no
contesting proof is presented within the contestation period, the prover receives
their respective ICO tokens on the target blockchain. In order for only the rightful
owner to be able to receive the tokens, they are required to sign the destination
address on the destination blockchain using the private key corresponding to their
source account used to make the payment within the source blockchain.

We implemented the NIPoPoW verifier algorithm as a Solidity smart contract4.
The contract consists of two functions. The submit_nipopow function is used by
the provers to provide their proof vectors. Instead of passing the block headers of
the proof, the provers pass the hashes of the block headers and the hashes of the
interlink vector. The reason is that the full data of the block header (especially
the Merkle tree root) is only useful for the blocks of interest. Thus, we reduce the
amount of data needed for the proof by a factor of 2. The rest of the parameters are
used in the inclusion proof of the block. After confirming the validity of the proof,
the compare_proofs function is called between the current and the best proof. If
the current proof is better then it is assigned to the best proof in the contract’s
storage. The gas costs are summarized in Table 3.4. The $USD column represents
the current price of this much gas on Ethereum.

Table 3.4: Verifier contract functions
Function Data Gas cost $USD
compare_proofs ∼8Kb ∼5M $4
submit_nipopow ∼65Kb ∼40M $32

3.8 Superchain Quality Distributions
In order to argue formally about the security properties of blockchains that are
equipped with the interlink data structure we introduce the new concept of su-
perchain quality, which generalizes the chain quality property from the backbone
model [60].

We first define a notion of “goodness” that bounds the deviation of superblocks
of a certain level from their expected mean. Using this we then define superchain
quality.

Intuitively, these definitions tell us that µ-superblocks occur approximately once
every 2µ blocks. Below, we make this notion more formal.

Definition 53 (Locally good superchain). A superchain C′ of level µ with underly-
ing chain C is said to be µ-locally-good with respect to security parameter δ, written
local-goodδ(C′,C, µ), if |C′| > (1− δ)2−µ|C|.

Definition 54 (Superchain quality). The (δ,m) superquality property Qµ
scq of a

chain C pertaining to level µ with security parameters δ ∈ R and m ∈ N states that
4The source code of the smart contract is available under an open source MIT license at https:

//github.com/dionyziz/popow/blob/master/experiment/contractNipopow.sol
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for all m′ ≥ m, it holds that local-goodδ(C↑µ [−m′ :], C↑µ [−m′ :]↓ , µ). That is, all
sufficiently large suffixes are locally good.

Definition 55 (Multilevel quality). A µ-superchain C′ is said to have multilevel
quality, written multi-goodδ,k1

(C,C′, µ) with respect to an underlying chain C = C′↓
with security parameters k1, δ if for all µ′ < µ it holds that for any C∗ ⊆ C, if
|C∗↑µ′ | ≥ k1, then |C∗↑µ | ≥ (1− δ)2µ

′−µ|C∗↑µ′ |.

Putting the above together we conclude with the notion of a good superchain.

Definition 56 (Good superchain). A µ-superchain C′ is said to be good, writ-
ten goodδ,k1

(C,C′, µ), with respect to an underlying chain C = C′↓ if it has both
superquality and multilevel quality with parameters (δ,m).

It is not hard to see that the above good statistical properties are attained with
overwhelming probability by all chains that are generated in optimistic environ-
ments, i.e. if no adversary tries to violate them. We formalize this in the following
theorems.

Lemma 19 (Local goodness). Assume C contains only honestly-generated blocks
in an optimistic execution. For all levels µ, for all constant δ > 0, all continuous
subchains C′ = C[i : j] with |C′| ≥ m are locally good, local-goodδ(C′,C, µ), with
overwhelming probability in m.

Proof. Observing that for each honestly generated block the probability of being a
µ-superblock for any level µ follows an independent Bernoulli distribution, we can
apply a Chernoff bound to show that the number of superblocks within a chain will
be close to its expectation, which is what is required for local goodness.

Lemma 20 (Multilevel quality). For all µ, 0 < δ ≤ 0.5, chain C containing only
honestly-generated blocks in an optimistic execution has (δ, k1) multilevel quality at
level µ with overwhelming probability in k1.

Proof. Identical.

Lemma 21 (Superquality). For all µ, δ > 0, a chain C adopted in an optimistic
execution has (δ,m)-superquality at level µ with overwhelming probability in m.

Proof. Let C′ = C↑µ and let C∗ = C′[−m′ :] for some m′ ≥ m. Then let B ∈ C∗↓
and letXB be the random variable equal to 1 if level(B) ≥ µ and 0 otherwise. {XB :
B ∈ C∗} are mutually independent Bernoulli random variables with expectation
E(XB) = 2−µ|C∗↓ |. LetX =

∑
B∈C∗↓ XB . ThenX follows a Binomial distribution

with parameters (m′, 2−µ) and note that |C∗| = X. Then E(|C∗↓ |) = 2−µ|C∗|.
Applying a Chernoff bound on |C∗↓ | we obtain Pr[|C∗↓ | ≤ (1 − δ)2−µ|C∗↓ ] ≤
exp(−δ22−µ−1|C∗|).

Lemma 22 (Optimistic superchain distribution). For any level µ, and any 0 <
δ < 0.5, a chain C containing only honestly-generated blocks adopted by an honest
party in an execution with random network scheduling is (δ,m)-good at level µ with
overwhelming probability in m.

Proof. This is a direct consequence of Lemma 21 and Lemma 20.
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3.9 Proof of attack on PoPoW
We now show that, if the statistical properties of blockchains are not respected in
some execution, our construction presented previously is insecure by illustrating an
explicit attack against our scheme. During the exposition of this attack, a simple
patch for our construction, which will also lead to a correct generic security proof,
will become clear.

We proceed in two steps. We first show that a powerful attacker can break chain
superquality with non-negligible probability. Then we construct a concrete double
spending attack based on this observation assuming an attacker of sufficiently high
hashing power (but still below 50%).

3.9.1 Attacking chain superquality
We construct an adversary A that breaks the superchain quality at level µ. A works
as follows. Assume she wants to attack the honest party B in order to have him
adopt chain CB which has a bad distribution of superblocks, i.e. such that local
goodness is violated in some sufficiently long subchain. She continuously determines
the current chain CB adopted by B. The adversary starts playing after |CB | ≥ 2.
If level(CB [−1]) < µ, then A remains idle. However, if level(CB [−1]) ≥ µ, then
A attempts to mine an adversarial block b on top of CB [−2]. If successful, she
attempts to mine another block b′ on top of b. If successful again, she broadcasts b
and b′. The adversarial mining continues until B adopts a new chain, which can be
due to two reasons: Either the adversary successfully mined b, b′ on top of CB [−2]
and B adopts them; or one of the honest parties mined a block which was adopted
by B. In either case, the adversary restarts the strategy by inspecting C[−1] and
acting accordingly. An execution of this attack is illustrated in Figure 3.6.

Figure 3.6: Superquality attack on prior work (PoPoW) [83]. The adversary per-
forms a selfish-mining [53] attack (gray blocks) whenever any honest parties have
recently mined a rare µ-superblock (black). The attack reduces the honest chain’s
superquality, while the attacker’s private chain is unaffected.

Assume now that an honestly-generated µ-superblock was adopted by B at
position CB [i] at round r. We now examine the probability that CB [i] will remain a
µ-superblock in the long run. Suppose r′ > r is the first round after r during which a
block is generated. A will succeed in this attack with non-negligible probability and
cause B to abandon the µ-superblock from their adopted chain. Therefore, there
exists δ such that the adversary will be able to cause δ-variance with non-negligible
probability in m. This suffices to show that superquality is violated.

As seen in the illustration, while the honest parties have generated several µ-
superblocks, some of them are in blockchain forks which have been abandoned,
causing a superquality harm.
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3.9.2 A double-spending attack
Extending the above attack, we modify the superquality attacker into an attacker
that causes a double spending attack in the PoPoW construction. We first give a
sketch of the attack.

As before, A targets the proofs generated by honest party B by violating µ-
superquality in B’s adopted chain. A begins by remaining idle until a certain chosen
block b. After block b is produced, A starts mining a secret chain which forks off
from b akin to a selfish mining attacker [53]. The adversary performs a normal
spending transaction on the honestly adopted blockchain and has it confirmed in
the block immediately following block b. She also produces a double spending
transaction which she secretly confirms in her secret chain in the block immediately
following b.
A keeps extending her own secret chain as usual. However, whenever a µ-

superblock is adopted by B, she temporarily pauses mining in her secret chain and
devotes her mining power to harm the µ-superquality of B’s adopted chain. Intu-
itively, for large enough µ, the time spent trying to harm superquality will be lim-
ited, because the probability of a µ-superblock occurring will be small. Therefore,
the adversary’s superchain quality will be larger than the honest parties’ superchain
quality (which will be harmed by the adversary) and therefore, even though the ad-
versary’s 0-chain will be shorter than the honest parties’ 0-chain, the adversary’s
µ-superchain will be longer than the honest parties’ µ-superchain and thus will be
favored by the verifier. We just remark here that for appropriate choice of system
parameters, the attack can be made to succeed with overwhelming probability.

We now calculate the exact probability of success of the attack. The attack
is parameterized by parameters r, µ which are picked by the adversary. µ is the
superblock level at which the adversary will produce a proof longer than the honest
proof. The modified attack works as follows: Without loss of generality, fix block b
to be Genesis. The adversary always mines on the secret chain which forks off from
genesis, unless a superblock generation event occurs. If a superblock generation
event occurs, then the adversary pauses mining on the secret chain and attempts
a block suppression attack on the honest chain. The adversary devotes exactly r
rounds to this suppression attack; then resumes mining on the secret chain. We show
that, despite this simplification (of fixing r) which is harmful to the adversary, the
probability of a successful attack is non-negligible for certain values of the protocol
parameters 5.

The adversary monitors the network for superblocks. Whenever an honest party
diffuses an honestly-generated µ-superblock, at the end of a given round r1, the
adversary starts devoting their mining power to block suppression starting from
the next round.

The block suppression attack works as follows. Let b be the honestly generated µ-
superblock which was diffused at the end of the previous round. If the round was not
uniquely successful, let b be any of the diffused honestly-generated µ-superblocks.
Let b be the tip of an honest chain CB . The adversary first mines on top of CB [−2].
If she is successful in mining a block b′, she continues extending the chain ending
at b′ (to mine b′′ and so on). The value r is fixed, so the adversary devotes exactly
r rounds to this whole process; the adversary will keep mining on top of CB [−2] (or
one of the adversarially-generated extensions of it) for exactly r rounds, regardless

5The attack could be further optimized, but we simplify it for exposition.
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of whether b′ or b′′ have been found. At the same time, the honest parties will be
mining on top of b (or a competing block in the case of a non-uniquely successful
round). Again, further successful block diffusion by the honest parties shall not
affect that the adversary is going to spend exactly r rounds for suppression. This
attack will succeed with overwhelming probability for the right choice of protocol
values.

Theorem 23 (Double-spending attack). There exist parameters p, n, t, q, µ, δ, with
t ≤ (1 − δ)(n − t), and a double spending attack against the constructions of Sec-
tion 3.3 and Section 3.5 that succeeds with overwhelming probability.

Proof. Recall that in the backbone notation n denotes the total number of parties,
t denotes the number of adversarial parties, q denotes the number of the random
oracle queries allowed per party per round and p is the probability that one random
oracle query will be successful and remember that p = T/2κ where T is the mining
target and κ is the security parameter (or hash function bit count). Then f denotes
the probability that a given round is successful and we have that f = 1 − (1 −
p)q(n−t). Recall further that a requirement of the backbone protocol is that the
honest majority assumption is satisfied, that is that t ≤ (1 − δ)(n − t) were δ ≥
2f +3ϵ, where ϵ ∈ (0, 1) is an arbitrary small constant describing the quality of the
concentration of the random variables.

Denote αA the secret chain generated by the adversary and αB the honest chain
belonging to any honest party. We will show that for certain protocol values we
have that Pr[|αA↑µ | ≥ |αB↑µ |] is overwhelming.

Assume that, to the adversary’s harm and to simplify the analysis, the adversary
plays at beginning of every round and does not perform adversarial scheduling. At
the beginning of the round when it is the adversary’s turn to play, she has access
to the blocks diffused during the previous round by the honest parties.

First, observe that at the beginning of each round, the adversary finds herself
in one of two different situations: Either she has been forced into an r-round-long
period of suppression, or she is not in that period. If she is within that period, she
blindly performs the suppression attack without regard for the state of the world. If
she is not within that period, then she must initially observe the blocks diffused at
the end of the previous round by the honest parties. Call these rounds during which
the diffused data must be examined by the adversary decision rounds. Let there
be ω decision rounds in total. In each such decision round, it is possible that the
adversary discovers a diffused µ-superblock and therefore decides that a suppression
attack must be performed starting with the current round. Call these rounds during
which this discovery is made by the adversary migration rounds. Let there be y
migration rounds in total. The adversary devotes the migration round to performing
the suppression attack as well as r − 1 non-migration rounds after the migration
round. Call these rounds, including the migration round, suppression rounds. In the
rest of the decision rounds, the adversary will not find any µ-superblocks diffused.
Call these secret chain rounds; these are rounds where the adversary devotes her
queries to mining on the secret chain. Let there be x secret chain rounds. If the
adversary devotes ω decision rounds to the attack in total, then clearly we have
that ω = x + y. If the total number of rounds during which the attack is running
is s then we also have that s = x+ ry, because for each migration round there are
r − 1 non-decision rounds that follow.

We will analyze the honest and adversarial superchain lengths with respect to
ω, which roughly corresponds to time (because note that ω ≥ s/r, and so ω is
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Figure 3.7: The double spending attack. The top chain fork is wholly adversarially
mined, while the bottom is honestly adopted. Gray blocks are adversarially mined
0-blocks. Black blocks are µ-superblocks.

proportional to the number of rounds). Let us calculate the probability pSB (“su-
perblock probability”) that a decision round ends up being a migration round. Ig-
noring the negligible event that there will be random oracle collisions, we have that
pSB = (n− t)qp2−µ.

Given this, note that the decision taken at the beginning of each decision round
follows independent Bernoulli distributions with probability pSB . Denote zi the
indicator random variable indicating whether the decision round was a migration
round. Therefore we can readily calculate the expectations for the random variables
x and y, as x = ω− y, y =

∑ω
i=1 zi. We have E[x] = (1− pSB)ω and E[y] = pSBω.

Applying a Chernoff bound to the random variables x and y, we observe that
they will attain values close to their mean for large ω and in particular Pr[y ≥
(1 + δ)E[y]] ≤ exp(− δ2

3 E[y]) and similarly Pr[x ≤ (1 − δ)E[x]] ≤ exp(− δ2

2 E[x]),
which are negligible in ω.

Given that there will be x secret chain rounds, we observe that the random vari-
able indicating the length of the secret adversarial superchain follows the binomial
distribution with xtq repetitions and probability p2−µ. We can now calculate the
expected secret chain length as E[|αA↑µ |] = xtqp2−µ. Observe that in this prob-
ability we have given the adversary the intelligence to continue using her random
oracle queries during a round even after a block has been found during a round
and not to wait for the next round. Applying a Chernoff bound, we obtain that
Pr[|αA↑µ | ≤ (1 − δ)E[|αA↑µ |]] ≤ exp(− δ2

2 E[|αA↑µ |]), which is negligible in ω
(because we know that with overwhelming probability x > (1− δ)(1− pSB)ω).

It remains to calculate the behavior of the honest superchain. Suppose that a
migration round occurs during which at least one superblock B is diffused. We will
now calculate the probability psup that the adversary is able to suppress that block
after r rounds by performing the suppression attack and cause all honest parties to
adopt a chain not containing B.

One way for this to occur is if the adversary has generated exactly 2 shallow
blocks (blocks which are not µ-superblocks) after exactly r rounds and the honest
parties having generated exactly 0 blocks after exactly r rounds. This provides a
lower bound for the probability, which is sufficient for our purposes. Call ADV-WIN
the event where the adversary has generated exactly 2 shallow blocks after exactly
r rounds since the diffusion of B and call HON-LOSE the event where the honest
parties have generated exactly 0 blocks after exactly r rounds since the diffusion of
B.

The number of blocks generated by the adversary after the diffusion of B fol-
lows the binomial distribution with r repetitions and probability pLB , where pLB

denotes the probability that the adversary is able to produce a shallow block (“low
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block probability”) during a single round. We have that pLB = tqp(1 − 2−µ). To
evaluate Pr[ADV-WIN], we evaluate the binomial distribution for 2 successes to
obtain Pr[ADV-WIN] = r(r−1)

2 p2LB(1 − pLB)
r−2. The number of blocks generated

by the honest parties after the diffusion of B follows the binomial distribution with
r repetitions and probability f . To evaluate Pr[HON-LOSE], we evaluate the bino-
mial distribution for 0 successes to obtain Pr[HON-LOSE] = (1 − f)r. Note that
this is an upper bound in the probability, in particular because there can be multi-
ple blocks during a non-uniquely successful round during which a µ-superblock was
generated.

Then observe that the two events ADV-WIN and HON-LOSE are independent
and therefore psup = Pr[ADV-WIN]Pr[HON-LOSE] = r(r−1)

2 p2LB(1− pLB)
r−2(1−

f)r.
Now that we have evaluated psup, we will calculate the honest chain length in

two chunks: The superblocks generated and adopted by the honest parties during
secret chain rounds, C1, and the superblocks generated and adopted by the honest
parties during suppression rounds, C2 (and note that these sets of blocks are not
blockchains on their own).
|C1| is a random variable following the binomial distribution with s(n − t)q

repetitions and probability p2−µ(1 − psup). In the evaluation of this distribu-
tion, we give the honest parties the liberty to belong to a mining pool and share
mining information within a round, an assumption which only makes matters for
the adversary worse. We can now calculate the expected length of C1 to find
E[|C1|] = s(n − t)qp2−µ(1 − psup). Applying a Chernoff bound, we find that
Pr[|C1| ≥ (1 + δ)E[|C1|]] ≤ exp(− δ2

3 E[|C1|]), which is negligible in s.
Finally, some additional µ-superblocks could have been generated by the honest

parties while the adversary is spending r rounds attempting to suppress a previous
µ-superblock. These µ-superblocks will be adopted in the case the adversary fails to
suppress the previous µ-superblock. As the adversary does not devote any decision
rounds to these new µ-superblocks, they will never be suppressed if the previous
µ-superblock is not suppressed. We collect these in the set C2. To calculate |C2|,
observe that the number of unsuppressed µ-superblocks which caused an adversarial
suppression period is |C1|. For each of these blocks, the honest parties spend r
rounds attempting to form further µ-superblocks on top. The total number of
such attemps is r|C1|. Therefore, the number of further honestly generated µ-
superblocks attained during the |C1| different r-round periods follows a binomial
distribution with |C1|rq(n− t) repetitions and probability p2−µ. Here we allow the
honest parties to use repeated queries within a round even after a shallow success
and to work in a pool to obtain an upper bound for the expectation. Therefore
E[|C2|] = |C1|rq(n−t)p2−µ and applying a Chernoff bound we obtain that Pr[|C2| ≥
(1+ δ)E[|C2|]] ≤ exp(− δ

3E[|C2|]), which is negligible in s and has a quadratic error
term. We deduce that |C2| will have a very small length compared to the rest of
the honest chain, as it is a vanishing term in µ.

Concluding the calculation of the adversarial superchain, we get E[|αB↑µ |] =
E[|C1|] + E[|C2|].

Finally, it remains to show that there exist values p, n, t, q, r, µ, δ such that a
E[|αA↑µ |] ≥ (1 + δ)E[|αB↑µ |]. Using the values p = 10−5, q = 1, n = 1000, t =
489, µ = 25, r = 200, we observe that the honest majority assumption is preserved.
Replacing these values into the expectations formulae above, we obtain E[|αA↑µ
|] ≈ 1.457 ∗ 10−10 ∗ω and E[|αB↑µ |] ≈ 1.424 ∗ 10−10 ∗ω, which result to a constant
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gap δ. Because the adversarial chain grows linearly in ω, the adversary only has to
wait sufficient rounds for obtaining m blocks to create a valid proof. Therefore, for
these values, the adversary will be able to generate a convincing PoPoW at some
level µ which is longer than the honest parties’ proof, even when the adversary does
not have a longer underlying blockchain.

3.9.3 Interactive Proofs of Proof-of-Work
Our attack also applies against the protocol described in [83].

In [83], the main algorithm of the verifier aims at distinguishing between two
candidate proofs (πA, χA) and (πB , χB). The honest prover, having adopted CB

during mining, initially produces the proof (πB , χB) as follows. First, the last k
blocks are sent as χB = CB [−k :]. Then for the first part of the chain, CB [: −k],
the prover sets πB to be the µ-superchain spanning CB for the largest µ such
that |πB | = m, where m is the protocol’s security parameter. The verifier ensures
that |πA| ≥ m, |πB | ≥ m so that the proofs are not shorter than m and then
checks whether πA = πB ; if so, the decision is drawn immediately based on χA, χB

without interaction. Otherwise, the verifier queries the provers for their claimed
anchored superchains CA↑µ, CB↑µ at some level µ. The verifier starts querying at
the highest possible level µ and descends until level µ is sufficiently low such that
b = LCA(πA↑µ, πB↑µ) is m blocks from the tip of the chain for one of the proofs.
That is, the querying stops at such µ when max(|πA↑µ {b :}|, |πB↑µ {b :}|) ≥ m.
The winner is designated as the prover with the most blocks after b at that level;
i.e., A, if |πA↑µ {b :}| ≥ |πB↑µ {b :}|, and B otherwise. The communication
overhead is reduced by only requesting blocks after the purported LCA. The security
parameter m is chosen to ensure that the probability of the attacker producing a
long superchain is negligible.

It is worth isolating the mistake in their security proof. Suppose player B is
honest and player A is adversarial and suppose b, the LCA block, was honestly
generated and suppose that the superchain comparison happens at level µ. Their
security proof then correctly argues that there will have been more honestly- than
adversarially-generated µ-superblocks after block b. Nevertheless, we observe that
the mere fact that there have been more honestly- than adversarially-generated µ-
superblocks after b does not imply that |πA↑µ {b :}| ≤ |πB↑µ {b :}|. The reason
is that some of these superblocks could belong to blocktree forks that have been
abandoned by B. Thus, the security conclusion does not follow. Regardless, their
basic argument and construction is what we will use as a basis for constructing
a system that is both provably secure and succinct under the same assumptions,
albeit requiring a more complicated construction structure to obtain security.

3.10 Formal security treatment
Based on the attack explored above, it is now easy to see that our construction can
be patched in a straightforward manner to achieve security. In particular, since the
manner in which the adversary was able to subvert the prover was by the violation
of goodness, we can mandate that the prover only tries to use succinct proofs to
prove claims about chains that are good at every level. In case goodness is violated,
the prover simply falls back to providing the whole chain. This allows us to argue
that the construction is secure by distinguishing two cases. In case goodness is
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violated, the honest prover will fall back to providing the whole chain, in which
case security will be reduced to the security of the standard blockchain protocol
choosing the longest 0-chain. In case goodness is not violated, we will argue that
the adversary is unable to win in these comparisons.

The previous construction was designed to prevent Bahack-style attacks [16],
where the adversary constructs “lucky” high-difficulty superblocks without filling in
the underlying proof-of-work in the lower levels. We now patch our protocol which,
while retaining this high level approach, adds a defence against the double-spending
attack of Section 3.9. The attack is neutralized since our verifier is more permissive,
allowing the prover to construct a proof that takes superquality “goodness” into
account when comparing forks. The modified construction is shown in Algorithm 26.
The algorithm has been modified to check the current portion of the subchain α
for goodness prior to moving to the lower superchain level. If goodness is indeed
maintained at the current level µ, the prover only tries to cover the span of the
last m blocks of level µ at level µ− 1, as seen in Line 7. Otherwise, if goodness is
violated at the part of the subchain α at level µ, then the prover completely ignores
level µ and tries to use the lower level µ− 1 to cover the whole span of α.

Algorithm 26 The goodness aware Prove algorithm for the NIPoPoW protocol

1: function Provegoodm,k,δ(C)
2: B ← C[0] ▷ Genesis
3: for µ = |C[−k].interlink| down to 0 do
4: α← C[: −k]{B :}↑µ
5: π ← π ∪ α
6: if goodδ,m(C, α, µ) then
7: B ← α[−m]
8: end if
9: end for
10: χ← C[−k :]
11: return πχ
12: end function

Only the concrete prover needs to be modified. The verifier and ≤m operator
remain as defined previously.

To aid intuition, we give a sketch of the proof before giving the full technical
proof.

Theorem 17 (Security). Assuming honest majority, the Non-interactive Proofs
of Proof-of-Work construction for computable k-stable monotonic suffix-sensitive
predicates is secure with overwhelming probability in κ.

Intuition. Suppose an adversary produces a proof πA and an honest party produces
a proof πB such that the two proofs cause the predicate Q to evaluate to different
values, while at the same time all honest parties have agreed that the correct value
is the one obtained by πB . Because of Bitcoin’s security, A will be unable to make
these claims for an actual underlying 0-level chain.

We now argue that the operator ≤m will signal in favour of the honest parties.
Suppose b is the LCA block between πA and πB . If the chain forks at b, there can
be no more adversarial blocks after b than honest blocks after b, provided there
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are at least k honest blocks (due to the Common Prefix property). We will now
argue that, further, there can be no more disjoint µA-level superblocks than honest
µB-level superblocks after b.

To see this, let b be an honest block generated at some round r1 and let the
honest proof be generated at some round r3. Then take the sequence of consecutive
rounds S = (r1, · · · , r3). Because the verifier requires at least m blocks from each
of the provers, the adversary must have m µA-superblocks in πA{b :} which are
not in πB{b :}. Therefore, using a negative binomial tail bound argument, we see
that |S| must be long; intuitively, it takes a long time to produce a lot of blocks
|πA{b :}|. Given that |S| is long and that the honest parties have more mining
power, they must have been able to produce a longer πB{b :} argument (of course,
this comparison will have the superchain lengths weighted by 2µA , 2µB respectively).
To prove this, we use a binomial tail bound argument; intuitively, given a long time
|S|, a lot of µB-superblocks |πB{b :}| will have been honestly produced.

We therefore have a fixed value for the length of the adversarial argument, a
negative binomial random variable for the number of rounds, and a binomial random
variable for the length of the honest argument. By taking the expectations of the
above random variables and applying a Chernoff bound, we see that the actual
values will be close to their means with overwhelming probability, completing the
proof.

We now give a formal treatment of the above security proof.
Assume t adversarial and n total parties, each with q PoW random oracle queries

per round. We will call a query to the RO µ-successful if the RO returns a value h
such that h ≤ 2−µT .

We define boolean random variables Xµ
r , Y µ

r and Zµ
r . Fix some round r, query

index j and adversarial party index k (out of t). If at round i an honest party
obtains a PoW with id < 2−µT , set Xµ

r = 1, otherwise Xµ
r = 0. If at round r

exactly one honest party obtains a PoW with id < 2−µT , set Y µ
r = 1, otherwise

Y µ
r = 0. If at round r the j-th query of the k-th corrupted party is µ-successful,

set Zµ
ijk = 1, otherwise Zµ

ijk = 0. Let Zµ
r =

∑t
k=1

∑q
j=1 Z

µ
ijk. For a set of rounds

S, let Xµ(S) =
∑

r∈S Xr and similarly define Y µ(S), Zµ(S).

Definition 57 (Typical execution). An execution of the protocol is (ϵ, η)-typical if:
Block counts don’t deviate. For all µ ≥ 0 and any set S of consecutive

rounds with |S| ≥ 2µηκ, we have:

• (1− ϵ)E[Xµ(S)] < Xµ(S) < (1 + ϵ)E[Xµ(S)] and (1− ϵ)E[Y µ(S)] < Y µ(s).

• Zµ(S) < (1 + ϵ)E[Zµ(S)].

Round count doesn’t deviate. Let S be a set of consecutive rounds such
that Zµ(S) ≥ k for some security parameter k. Then |S| ≥ (1 − ϵ)2µ Zµ(S)

pqt with
overwhelming probability in k.

Chain regularity. No insertions, no copies, and no predictions [60] have
occurred.

Theorem 24 (Typicality). Executions are (ϵ, η)-typical with overwhelming proba-
bility in κ.

Proof. Block counts and regularity. For the blocks count and regularity, we
refer the reader to [60] for the full proof.
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Round count. First, observe that Zµ
ijk ∼ Bern(2−µp) and these are jointly in-

dependent. Therefore Zµ
S ∼ Bin(tq|S|, 2−µp) and |S| ∼ NB(ZS , 2

−µp). So E(|S|) =
2µ ZS

pqt . Applying a tail bound to the negative binomial distribution, we obtain that
Pr[|S| < (1− ϵ)E(|S|)] ∈ Ω(ϵ2m).

The following lemma is at the heart of the security proof that will follow.

Lemma 25. Suppose S is a set of consecutive rounds r1 . . . r2 and CB is a chain
adopted by an honest party at round r2 of a typical execution. Let CS

B = {b ∈ CB :
b was generated during S}. Let µA, µB ∈ N. Suppose CS

B↑µB is good. Suppose C′A
is a µA-superchain containing only adversarially generated blocks generated during
S and suppose that |C′A| ≥ k. Then 2µA |C′A| < 1

32
µB |CS

B↑µB |.

Proof. From |C′A| ≥ k we know that Zµ(S) ≥ k. From the definition of typicality,
we have |S| ≥ (1−ϵ′)2µA 1

pqt |C
′
A|. Applying the chain growth theorem [60] we obtain

that |CS
B | ≥ (1 − ϵ)f |S|. But from the goodness of CS

B↑µB , we know that |CS
B↑µB

| ≥ (1− δ)2−µB |CS
B |. Therefore |CS

B↑µB | ≥ 2−µB (1− δ)(1− ϵ)f(1− ϵ′)2µA 1
pqt |C

′
A|

and so 2µA |C′A| <
pqt

(1−δ)(1−ϵ′)(1−ϵ)f 2
µB |CS

B↑µB |.

Definition 58 (Adequate level of honest proof). Let π be an honestly generated
proof constructed upon some adopted chain C and let b ∈ π.

Then µ′ is defined as µ′ = max{µ : |π{b :}↑µ | ≥ max(m+1, (1−δ)2−µ|π{b :}↑µ
↓ |)}. We call µ′ the adequate level of proof π with respect to block b with security
parameters δ and m.

Note that the adequate level of a proof is a function of both the proof π and the
chosen block b.

Lemma 26. Let π be some honest proof generated with security parameters δ,m.
Let C be the underlying chain, b ∈ C be any block and µ′ be the adequate level of the
proof with respect to b and the same security parameters.

Then C{b :}↑µ′
= π{b :}↑µ′

.

Proof. π{b :}↑µ′⊆ C{b :}↑µ′
is trivial. For the converse, we show that for all µ∗ > µ′,

we have that in the iteration of the Prove for loop with µ = µ∗, the block stored
in variable B precedes b in C.

Suppose µ = µ∗ is the first for iteration during which the property is violated.
This cannot be the first iteration, as there B = C[0] and Genesis precedes all
blocks. By the induction hypothesis we see that during the iteration µ = µ∗+1, B
preceded b. From the definition of µ′ we know that µ′ is the highest level for which
|π{b :}↑µ′

[1 :]| ≥ max(m, (1− δ)2−µ
′ |π{b :}↑µ′

[1 :]↓ |).
Hence, this property cannot hold for µ∗ > µ′ and therefore |πB{b :}↑µ

∗
[1 :]| < m

or ¬local-goodδ(π{b :}↑µ
∗
[1 :],C, µ∗).

In case local-good is violated, variable B remains unmodified and the induction
step holds. If local-good is not violated, then |π{b :}↑µ∗

[1 :]| < m and so π↑µ∗
[−m]

precedes b.

Remark 5 (Goodness adequacy). If the goodness of the chain can be assumed, then
the adequate level of an honest proof is nothing else than the highest level having a
sufficient (m) number of blocks after the fork point b. In that case, the proof for the
above lemma is easy and follows from the prover construction. It always covers the
last m blocks of level µ with the respective blocks in level µ− 1.

121



Lemma 27. Suppose the verifier evaluates πA ≥ πB in a protocol interaction where
B is honest and assume during the comparison that the compared level of the honest
party is µB. Let b = LCA(πA, πB) and let µ′B be the adequate level of πB with
respect to b. Then µ′B ≥ µB.

Proof. Because µB is the compared level of the honest party we have 2µB |C{b :}↑µB

| > 2µB |C{b :}|. The proof is by contradiction. Suppose µ′B < µB . By definition,
µ′B is the maximum level such that |πB{b :}↑µ [1 :]| ≥ max(m, (1 − δ)2−µ|πB{b :
}↑µ [1 :]↓ |), therefore µB does not satisfy this condition. But we know that |πB{b :
}↑µB [1 :]| ≥ m because µB was selected by the Verifier. Therefore 2µB |CB{b :}↑µB

| < (1−δ)|C{b :}|. But µ′B satisfies goodness, so 2µ
′
B |CB{b :}↑µ

′
B | > (1−δ)|C{b :}|.

From the last two equations, we obtain (1 − δ)|C{b :}| > 2µ
′
B |C{b :}↑µ′

B |, which
contradicts the previous equation.

Theorem 17 (Security). Assuming honest majority, the Non-interactive Proofs
of Proof-of-Work construction for computable k-stable monotonic suffix-sensitive
predicates is secure with overwhelming probability in κ.

Proof. By contradiction. Let m = k1 + k2 + k3 and let k1, k2, k3 be polynomial
functions of κ. Let Q be a k-stable monotonic suffix-sensitive chain predicate.
Assume NIPoPoWs on Q is insecure. Then, during an execution at some round r3,
Q(C) is defined and the verifier V disagrees with some honest participant. Assume
the execution is typical. V communicates with adversary A and honest prover B.
The verifier receives proofs πA, πB . Because B is honest, πB is a proof constructed
based on underlying blockchain CB (with πB ⊆ CB) which B has adopted during
round r3 at which πB was generated. Furthermore, πA was generated at round
r′3 ≤ r3.

The verifier outputs ¬Q(CB), and so VerifyQm,k = ¬Q(CB). Thus it is neces-
sary that πA ≥m πB , otherwise, because Q is suffix sensitive, VerifyQ would have
returned Q(CB). We now show that πA ≥m πB is a negligible event.

Let b = LCA(πA, πB) and let b∗ be the most recent honestly generated block
in CB preceding b (and note that b∗ necessarily exists because Genesis is honestly
generated). Let the levels of comparison decided by the verifier be µA and µB

respectively. Let µ′B be the adequate level of proof πB with respect to block b. Call
αA = πA↑µA {b :}, α′B = πB↑µ

′
B {b :}.

We now show three successive claims: First, αA and α′B↓ are mostly disjoint.
Second, αA contains mostly adversarially-generated blocks. And third, the adver-
sary is able to produce this αA with negligible probability.

Claim 1a: If µ′B ≤ µA then αA[1 :] and αB [1 :]↓ are completely disjoint.
Applying Lemma 26 to CB{b :}↑µ′

B we see that CB{b :}↑µ′
B= πB↑µ

′
B {b :} and

so πB↑µ
′
B {b :}[1 :] ∩ πA↑µA {b :}[1 :] = ∅.

Claim 1b: If µA < µ′B then |αA[1 :] ∩ αB↓ [1 :]| ≤ 2µ
′
B−µAk1.

First, observe that, because the adversary is winning, therefore |αA| > 2µ
′
B−µAm.

Suppose for contradiction that |αA[1 :] ∩ αB↓ [1 :]| > 2µ
′
B−µAk1. This means there

are indices 1 ≤ i < j such that |CB↑µA [i : j]| > 2µ
′
B−µAk1 but |CB↑µA [i : j]↓

↑µ′
B | = 0. But this contradicts the goodness of CB↑µ

′
B . Therefore there are more

than 2µ
′
B−µA(k2 + k3) blocks in αA that are not in αB , and clearly also more than

k2 + k3 blocks.
From Claim 1a and Claim 1b, we conclude that there are at least k2+k3 blocks

after block b in αA which do not exist in αB . We now set b2 = LCA(CB , αA).
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Figure 3.8: Two competing proofs at different levels.

Claim 2: At least k3 superblocks of αA are adversarially generated.
We show this by showing that αA[k2 + 1 :] contains no honestly mined blocks.

By contradiction, assume that the block αA[i] for some i ≥ k1+k2+1 was honestly
generated. This means that an honest party had adopted the chain αA[i−1] at some
round r2 ≤ r3. Because of the way the honest parties adopt chains, the superchain
αA[: i− 1] has an underlying properly constructed 0-level anchored chain CA such
that CA ⊆ αA[: i − 1]. Let j be the index of block b2 within CA. As αA ⊆ CA,
observe that |CA[j + 1 :]| > i− 1 ≥ k2 + k1. Therefore CA[: −(k2 + k1)] ̸≼ CB . But
CA was adopted by an honest party at round r2 which is prior to round r3 during
which CB was adopted by an honest party. This contradicts the Common Prefix
[60] property with parameter k2. It follows that with overwhelming probability in
k2, the k3 = m−k2−k1 last blocks of the adversarial proof have been adversarially
mined.

Claim 3: A is able to produce a αA that wins against αB with negligible
probability.

Let b′ be the latest honestly generated block in αA, or b∗ if no such block exists
in αA. Let r1 be the round when b′ was generated. Let j be the index of b′.
Consider the set S of consecutive rounds r1 . . . r3. Every block in αA[−k3 :] has
been adversarially generated during S and |αA[−k3 :]| = k3. CB is a chain adopted
by an honest party at round r3 and filtering the blocks by the rounds during which
they were generated to obtain CS

B , we see that CS
B = CB{b∗ :}. But chain CS

B↑µ
′
B is

good with respect to CS
B . Applying Lemma 25, we obtain that with overwhelming

probability 2µA |αA{b′ :}| < 1
32

µ′
B |CS

B↑µ
′
B |.

But |αB | ≥ |CS
B↑µ

′
B | and |αA{b′ :}| ≥ |αA| − k2, therefore 2µA |αA| − k2 <

1
32

µ′
B |αB |. But |αA| − k2 ≥ k3, therefore 1

32
µ′
B |αB | > k3 and so 2µ

′
B |αB | > 3k3

Taking k2 = k3, we obtain 2µA |αA| < 1
33k3 + k3 = 2k3 < 2µ

′
B |αB |. But this

contradicts the fact that πA ≥ πA, and so the claim is proven.
Therefore we have proven that 2µ

′
B |πB↑µ

′
B | > 2µA |πµA

A |. From the definition

123



of µB , we know that 2µB |πB↑µB | ≥ 2µ
′
B |πB↑µ

′
B |, and therefore we conclude that

2µB |πB↑µB | > 2µA |πA↑µA |.

Remark 6 (Variance attacks). The critical issue addressed by this security proof
is to avoid Bahack-style attack [16] where the adversary constructs “lucky” high-
difficulty superblocks without filling in the underlying proof-of-work in the lower
levels. Observe that, while setting m = 1 “preserves” the proof-of-work in the sense
that expectations remain the same, the probability of an adversarial attack becomes
approximately proportional to the adversary power if the adversary follows a suitable
strategy (for a description of such a strategy, see the parameterization section). With
higher values of m, the probability of an adversarial attack drops exponentially in
m, even though they maintain constant computational power, and hence satisfy a
strong notion of security.

Remark. Intuitively, the attack of Section 3.9 is neutralized, because our prover
takes “goodness” of blockchains into account and the verifier does not compare proofs
strictly at the same level.
Remark. We have explored security in the synchronous model. We remark that
the same construction can work in a partially synchronous model by setting k′ = 2k,
where k′ is the security parameter of the partially synchronous model and k is the
security parameter in the synchronous model. We leave the full treatment of this
for future work.

3.10.1 Infix security
We observe that now that we have proven the modified suffix construction secure,
the security of infix proofs follows without any modifications in the infix construc-
tion. We formally state this in the following corollary.

Under honest majority, the infix NIPoPoW protocol (P, V ) is secure for all
computable infix-sensitive k-stable monotonic predicates Q, except with negligible
probability in κ.

Proof. Assume a typical execution. It suffices to show that the verifier will output
the same value Q(C) as some honest prover. Assume honest prover B has adopted
a chain C with Q(C) = v and has provided proof πB . By Theorem 17 and because
the evaluation of π̃ is identical in the suffix-sensitive and in the infix-sensitive case,
we deduce that b = π̃[−1] will be an honestly adopted block. Furthermore, due to
the Common Prefix property [60], b will belong to all honest parties’ chains and in
the same position, as it is buried under |χ̃| = k blocks.

Because Q is infix-sensitive, it will be defined using a witness predicate D.
Because Q is stable, we will have ∃C′ ⊆ C[: −k] : D(C′). But C′ ⊆ πB . Let
S = ancestors(b) be the ancestors evaluated by the verifier. As C′ ⊆ S, therefore
Q(C′) = Q(S) = v.

3.11 Succinctness

3.11.1 Optimistic succinctness
We analyse the patched scheme we saw in Algorithm 26. We will illustrate why our
construction is succinct in the honest setting. We then discuss techniques to make
the construction succinct in broader adversarial settings.
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We first observe that full succinctness in the standard honest majority model is
impossible to prove for our construction. To see why, recall that an adversary with
sufficiently large mining power can significantly harm superquality as described in
Section 3.9.1. By reducing superquality for a sufficiently low level µ, the adversary
can cause the honest prover to digress in their proofs from high-level superchains
down to low-level superchains, causing a linear proof to be produced.

For instance, if superquality is harmed at µ = 3, the prover will need to digress
down to level µ = 2 and include the whole 2-superchain, which, in expectation, will
be of size |C|/2.

Having established security in the general case of the standard honest majority
model, we now concentrate our succinctness claims to the particular “optimistic”
case where the adversary does not use their (minority) computational power or
network power.

Definition 59 (Optimistic execution). We will call an execution optimistic if the
adversary has q = 0 random oracle queries and the messages diffused by honest
parties are delivered in random (and not adversarial) order.

In this setting, the superquality of the chain must be the same as a fully honestly-
generated chain generated with no network adversary. Last, for now, we will not
allow the adversary to produce any proofs; that is, all proofs consumed by the
verifier are honestly-generated.

Theorem 28 (Number of levels). In any execution, let S denote the set of all blocks
produced honestly or adversarially. The number of superblock levels which have at
least m blocks are at most log(|S|), with overwhelming probability in m.

Proof. Each block id in S is generated by the random oracle, so Pr[id ≤ T2−µ] =
2−µ. These are independent Bernoulli trials. For each B ∈ S, let Xµ

B ∈ {0, 1} be
the random variable indicating whether the block belongs to level µ and let Dµ =∑

B∈S Xµ
B indicate their sum, which is a Binomial distribution with parameters

(|S|, 2−µ) and expectation E[Dµ] = |S|2−µ.
All of the Xµ are independent. We apply a Binomial Chernoff bound to the

sum. We have Pr[Dµ ≥ (1 + δ)E[Dµ]] ≤ exp(− δ2

3 E[Dµ]). Letting µ = log(|S|) we
have that E[Dµ] = 1. Therefore Pr[Dµ ≥ 1 + δ] ≤ exp(− δ2

3 ). Requiring 1 + δ = m,
we get Pr[Dµ ≥ m] ≤ exp(− (m−1)2

3 ), which is negligible in m.

The above theorem establishes that the number of superchains is small. What
remains to be shown is that few blocks will be included at each superchain level.

Theorem 29 (Large upchain expansion). Consider an optimistic execution and let
C be an honestly adopted chain and let C′ = C↑µ−1 [i : i + 4m] for any i. Then
|C′↑µ | ≥ m with overwhelming probability in m.

Proof. Because each block of level µ − 1 was generated as a query to the random
oracle, it constitutes an independent Bernoulli trial and the number of blocks in level
µ, namely π↑µ, is a Binomial distribution with parameters (4m, 1/2). Observing
that E[C′↑µ] = 2m and applying a Chernoff bound, we get Pr[|C′↑µ | ≤ m] =

Pr[|C′↑µ | ≤ (1− 1
2 )2m] ≤ exp(− (1/2)2

2 2m) which is negligible in m.
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This probability bounds the probability of fewer than m blocks occurring in the
µ level restriction of (µ− 1)-level superchains of more than 4m blocks.

Lemma 30 (Small downchain support). Consider an optimistic execution and let
C be an honestly adopted chain and C′ = C↑µ [i : i + m]. Then |C′↓↑µ−1 | ≤ 4m
with overwhelming probability in m.

Proof. Assume the (µ− 1)-level superchain had at least 4m blocks. Then by The-
orem 29 it follows that more than m blocks exist in level µ with overwhelming
probability in m, which is a contradiction.

This last lemma establishes the fact that the support of blocks needed under
the m-sized chain suffix to move from one level to the one below is small. Based on
this, we can establish our theorem on succinctness:

Theorem 31 (Optimistic succinctness). In an optimistic execution, Non-Interactive
Proofs of Proof-of-Work produced by honest provers are succinct with the number
of blocks bounded by 4m log(|C|), with overwhelming probability in m.

Proof. Assume C is an honest party’s chain. From Theorem 28, the number of levels
in the NIPoPoW is at most log(|C|) with overwhelming probability in m (note that
|C| ∼ Θ(|S|)). First, observe that the count of blocks in the highest level will be
less than 4m from Theorem 29; otherwise a higher superblock level would exist.
From Lemma 22, we know that at all levels µ the chain will be good. Therefore, for
each µ superchain C the supporting (µ − 1)-superchain will only need to span the
m-long suffix of the µ-superchain above. For the m-long suffix of each superchain
of level µ, the supporting superchain of level µ−1 will have at most 4m blocks from
Lemma 30. Therefore the size of the proof is 4m log(|C|).

In the above theorem, note the linear dependency between the round r during
which a proof is generated and the length |C| of the chain of each honest prover.

3.11.2 Succinctness of adversarial proofs
In the stronger adversarial setting, however, it is possible for the adversary to pro-
duce large dummy (incorrect) proofs that expand the verification time; security
will not be hurt but it would take more time to complete verification. One may
dismiss this as a trivial denial of service attack and have a resource bounded ver-
ifier simply stop if it is confronted with such a processing task. However, simply
dismissing superpolylogarithmic proofs is an incorrect strategy, as honest provers
can produce such longer proofs in case an adversarial miner harms the goodness of
the blockchain.

It would therefore be useful for honest provers to have the ability to signal to
the verifier that such time expansion is indeed necessary because of an attack on
superchain quality, rather than because a malicious prover is simply sending long
proofs that will eventually be rejected. With such signaling mechanism, a resource
bounded verifier can distinguish between a denial of service attack that may be
directed solely to it from a denial of service attack that is launched by an attacker
that has the ability to interfere globally with superchain quality.

To facilitate the above signaling, we offer a simple generalization of our con-
struction that achieves this. Our extended construction allows the verifier to stop
processing input early, in a streaming fashion, thereby only requiring logarithmic
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communication complexity per proof received. To achieve this, observe that honest
proofs need to be large only if there is a violation of goodness. However, goodness
is not harmed when the chain is not under attack by the adversarial computational
power or network. Therefore, we require the prover to produce a certificate of bad-
ness in case there is a violation of goodness in the blockchain. This certificate will
always be logarithmic in size and must be sent prior to the rest of the proof by the
prover to the verifier. Because the certificate will be logarithmic in size even in the
case of an adversarial attack on the chain, the honest verifier can stop processing
the certificate after a logarithmic time bound. If the certificate is claimed to be
longer, the honest verifier can reject early by deciding that the prover is adversar-
ial. Looking at the certificate, the honest verifier determines whether there is a
possibility for a lack of goodness in the underlying chain. If there’s no adversarial
computational power in use, the certificate is impossible to produce.

The certificates of badness are produced easily as follows. First, the honest veri-
fier finds the maximum level max-µ at which there are at leastmmax-µ-superblocks
and includes it in the certificate. Then, because there is a violation of goodness
there must exist two levels µ < µ′ such that 2µ|C↑µ | > (1 + δ)2µ

′ |C↑µ′ | in some
part C of the honestly adopted chain. But µ′ − µ ≤ max-µ. Therefore, there must
exist two adjacent levels µ1 < µ2 which break goodness but with error parameter
(1 + δ)1/max-µ. In particular, it will hold that 2µ1 |C↑µ1 | > (1 + δ)1/max-µ2µ2 |C↑µ2 |.
This condition is direct for the prover to find and trivial for the verifier to check
and completes the construction. Note that it is possible that a certificate of bad-
ness is produceable where two adjacent levels have more than (1 + δ)1/max-µ error
even if there is no harm to global goodness; however, these certificates cannot be
produced when no adversarial power is in use. The algorithm to do this is shown
in Algorithm 27.

Algorithm 27 The badness prover which generates a succinct certificate of badness
1: function badnessm,δ(C)
2: M ← {µ : |C↑µ | ≥ m} \ {0}
3: ρ← 1/max(M)
4: for µ ∈M do
5: for B ∈ C↑µ do
6: C′ ← C↑µ {B :}[: m]
7: if |C′| = m then
8: ▷ Sliding m-sized window
9: C∗ ← C′↓↑µ−1
10: if 2|C′| < (1− δ)ρ|C∗| then
11: return C∗ ▷ Chain is bad
12: end if
13: end if
14: end for
15: end for
16: return ⊥ ▷ Chain is good
17: end function

Therefore, we augment the NIPoPoW construction as follows. The honest prover
sends a tuple of two items. The first item is empty if the second item is polyloga-
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rithmic in the size of the chain; otherwise it is a certificate of badness. The second
item is the NIPoPoW proof as in the previous construction. The verifier processes
only the first polylogarithmic number of bytes from the incoming proof. If within
that portion a certificate of badness is found, it is checked for validity. If it is found
to be valid, the whole proof is checked, regardless of size. If it is found to be invalid
or no certificate has been provided, then the proof is rejected as invalid. We call
the augmented construction certified NIPoPoWs.

Lemma 32 (Certified NIPoPoWs succinctness). If all miners are honest and the
network scheduling is random, certified non-interactive proofs-of-proof-of-work pro-
duced by the adversary are processed in polylogarithmic time in the size of the chain
by honest verifiers, except with negligible probability in m.

Proof. Because all miners are honest and the network scheduling is random, there-
fore certificates of badness exist with negligible probability in m. Conditioning on
the event that certificates of badness do not exist, the honest verifier will reject the
proof in polylogarithmic time.

We also establish that the modified construction does not harm security below.
Security is established in the general case where the adversary has minority mining
power.

Theorem 33 (Certified NIPoPoWs security). Assuming honest majority, certified
non-interactive proofs-of-proof-of-work are secure, except with negligible probability
in κ.

Proof. We distinguish two cases: Either goodness has been violated; or it has not
been violated. Suppose that goodness has been violated. In that case, an honest
prover will include a certificate of badness in their proof and their proof will be
processed by an honest verifier.

In the case where goodness is not violated, all honest proofs will be logarithmic
in size as established by Lemma 32. Therefore, all honest proofs will be processed
by an honest verifier.

Under the condition that all honest proofs will be processed, the rest of the
security argument follows immediately from Theorem 17.

3.11.3 Infix succinctness
Having established the succinctness of the modified suffix construction, the suc-
cinctness of the infix construction follows in the next corollary.

The infix NIPoPoW protocol (P, V ) is succinct for all computable infix-sensitive
k-stable predicates Q in which the witness predicateD depends on a polylogarithmic
number of blocks d(|C|).

Proof. As long as the number of blocks on which the predicate depends is poly-
logarithmic (< d) with respect to the chain length, our proofs remain succinct.
Specifically, the proof size for the suffix has exactly the same size. Then the part
of the proof that is of interest is the output of the followDown algorithm. However,
notice that this algorithm will on average produce as many blocks as the difference
of levels between B′ and E, which is at most logarithmic in the chain size. Hence
the proof sizes will be in expectation (m + |C′|) log(|C|), which remains succinct if
|C′| ∈ O(polylog(|C|)).
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3.12 Gradual Deployment Paths
Our construction requires an upgrade to the consensus layer. We envision that
new cryptocurrencies will adopt our construction in order to support efficient light
clients. However, existing cryptocurrencies could also benefit by adopting our con-
struction as an upgrade. In this section we outline several possible upgrade paths.
We also contribute a novel upgrade approach, a “velvet fork,” which allows for grad-
ual deployment without harming unupgraded miners.

3.12.1 Hard Forks and Soft Forks
The obvious way to upgrade a cryptocoin to support our protocol is a hard fork: the
block header is modified to include the interlink structure, and the validation rules
modified to require that new blocks (after a “flag day”) contain a correctly-formed
interlink hash.

The safety of a hard fork is debated [33], as they are not “forward compatible”.
NIPoPoWs can also be implemented by a soft fork. A soft fork construction requires
including the interlink not in the block header, but in the coinbase transaction. It
is enough to only store a hash of the interlink structure. The only requirement
for the NIPoPoWs to work is that the PoW commits to all the pointers within
the interlink so that the adversary cannot cause a chain reorganization. If we take
that route, then each NIPoPoW will be required to present not only the block
header, but also a proof-of-inclusion path within the Merkle tree of transactions
proving that the coinbase transaction is indeed part of the block. Once that is
established, the coinbase data can be presented, and the verifier will thereby know
that the hash of the interlink data structure is correct. Given that in the Bitcoin
implementation there is a block size limit, observe that including such proofs-of-
inclusion will only increase the NIPoPoW sizes by a constant factor per block,
allowing for the communication complexity to remain polylogarithmic.

3.12.2 Velvet Forks
We now describe a novel upgrade path that avoids the need for a fork at all. The
key idea is that clients can make use of our scheme, even if only some blocks in
the blockchain include the interlink structure. Given that intuitively the changes
we will propose require no rule modifications to the consensus layer, we call this
technique a velvet fork 6.

We require upgraded miners to include the interlink data structure in the form
of a new Merkle tree root hash in their coinbase data, similar to a soft fork. An un-
upgraded miner will ignore this data as comments. We further require the upgraded
miners to accept all previously accepted blocks, regardless of whether they have in-
cluded the interlink data structure or not. Even if the interlink data structure is
included and contains invalid data, we require the upgraded miners to accept their
containing blocks. Malformed interlink data could be simply of the wrong format,
or the pointers could be pointing to superblocks of incorrect levels. Furthermore,
the pointers could be pointing to superblocks of the correct level, but not to the
most recent block. By requiring upgraded miners to accept all such blocks, we do

6After the first manuscript of our related paper was published on the ePrint archive, velvet forks
were subsequently explored in detail in the follow-up work by Zamyatin et. al. [158]
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not modify the set of accepted blocks. Therefore, the upgrade is simply a “recom-
mendation” for miners and not an actual change in the consensus rules. Hence,
while a hard fork makes new upgraded blocks invalid to unupgraded clients and a
soft fork makes new unupgraded blocks invalid to upgraded clients, the velvet fork
has the effect that blocks produced by either upgraded or unupgraded clients are
valid for either. In reality, the blockchain is never forked. Only the codebase is
upgraded, and the data on the blockchain is interpreted differently.

The reason this can work is because provers and verifiers of our protocol can
check the validity of the claims of miners who make false interlink chain claims.
An upgraded prover can check whether a block contains correct interlink data and
use it. If a block does not contain correct interlink data, the prover can opt not to
use those pointers in their proofs. The Verifier verifies all claims of the prover, so
adversarial miners cannot cause harm by including invalid data. The one thing the
Verifier cannot verify in terms of interlink claims is whether the claimed superblock
of a given level is the most recent previous superblock of that level. However, an
adversarial prover cannot make use of that to construct winning proofs, as they
are only able to present shorter chains in that case. The honest prover can simply
ignore such pointers as if they were not included at all.

The velvet prover works as usual, but additionally maintains a realLink data
structure, which stores the correct interlink for each block. Whenever a new winning
chain is received from the network, the prover checks it for blocks that it hasn’t
seen before. For those blocks, it maintains its own realLink data structure which it
updates accordingly to make sure it is correct regardless of what the interlink data
structure of the received block claims.

Algorithm 28 Supplying the necessary data to calculate a connected C↑µ during
a velvet fork.
1: function find C↑µ(b, realLink, blockById)
2: B ← C[−1]
3: aux← {B}
4: π ← [ ]
5: if level(B) ≥ µ then
6: π ← πB
7: end if
8: while B ̸= b do
9: (B, aux’)← followUp(B,µ, realLink, blockById)
10: aux← aux ∪ aux’
11: π ← πB
12: end while
13: return π, aux
14: end function
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Algorithm 29 followUp produces the blocks to connect two superblocks in velvet
forks.
1: function followUp(B, µ, realLink, blockById)
2: aux← {B}
3: while B ̸= Gen do
4: if B.interlink[µ] = realLink[id(B)][µ] then
5: id← B.interlink[µ]
6: else ▷ Invalid interlink
7: id← B.previd
8: end if
9: B ← blockById[id]
10: aux← aux ∪ {B}
11: if level(B) = µ then
12: return B, aux
13: end if
14: end while
15: return B, aux
16: end function

The velvet C↑ operator shown in Algorithm 28 is implemented identically as
before, except that instead of following the interlink pointer blindly it now calls the
helper function followUp, shown in Algorithm 29. It accepts block B and level µ
and creates a connection from B back to the most recent preceding µ-superblock, by
following the interlink pointer if it is correct. Otherwise, it follows the previd link
which is available in all blocks, and tries to follow the interlink pointer again from
there. Finally, the velvet prover shown in Algorithm 30 simply applies the velvet
C↑ operator and includes the auxiliary connecting nodes within the final proof. No
changes in the verifier are needed; note that in the case of infix proofs the index of
the block is used by the verifier; if this information is not provided by the underlying
blockchain headers, the index should be included in the interlink structure.

Algorithm 30 The Prove algorithm for the NIPoPoW protocol, modified for a
velvet fork.
1: function Prove’m,k(C, realLink, blockById)
2: maxµ← |realLink[id(C[−k − 1])]|
3: b← C[0] ▷ Genesis block
4: Π̃← ∅
5: for µ = maxµ down to 0 do
6: π, aux← find C[: −k]↑µ using realLink, blockById
7: if |π| ≥ m then
8: b← π[−m]
9: end if
10: Π̃← Π̃ ∪ aux
11: end for
12: χ← C[−k :]
13: return Π̃χ
14: end function
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Velvet NIPoPoWs can preserve security if appropriately implemented [88]. Ad-
ditionally, if a constant minority of miners has upgraded their nodes, then succinct-
ness is also preserved as there is only a constant factor penalty as proven in the
following theorem.

Theorem 34. Velvet non-interactive proofs-of-proof-of-work on honest chains by
honest provers remain succinct as long as a constant percentage g of miners has
upgraded, with overwhelming probability.

Proof. From Theorem 31 we know that the proofs π contain only a O(polylog(m))
amount of blocks. For each of these blocks, the velvet client needs to include a
followUp tail of blocks. Assume a percentage 0 < g ≤ 1 of miners have upgraded
with NIPoPoW support. Then the question of whether each block in the honest
chain is upgraded follows a Bernoulli distribution. If the velvet proof were to be
larger than ∆ times the soft fork proof in the number of blocks included, then this
would require at least one of the followUp tails to include at least ∆ sequential
unupgraded blocks. But since the upgrade status of each block is independent, the
probability of this occurring is (1− g)∆, which is negligible in ∆.

We would not have been able to pull off this upgrade without modifications to
the consensus layer in the sense that the interlink data structure could not have been
maintained somewhere independently of the blockchain: It is critical that the proof-
of-work commits to the interlink data structure. Interestingly, the interlink data
structure does not need to be part of coinbase and can be produced and included
in regular transactions by users (such as OP_RETURN transactions). Thus, the
miners can be completely oblivious to it, while users and provers make use of the
feature, making it a user-activated velvet fork. Interested users regularly create
transactions containing the most recent interlink pointers so that they are included
in the next block. If the transaction makes it to the next block, it can be used by
the prover who keeps track of these. Otherwise, if it becomes part of a subsequent
block, in which case some of the pointers it contains are invalid, it can be ignored
or only partially used.

The necessary changes needed in the various construction algorithms in order to
support a velvet fork are shown in Algorithm 28, Algorithm 29, and Algorithm 30.

Remark 7 (Supporting clients with different beliefs). The interlink format does not
depend on parameters m, k. Therefore, it is not necessary to agree on a particular
value of these parameters. Instead, the choice of m and k can be a user-configurable
parameter to clients. Clients would send a particular m and k as part of their
requirement to the prover.
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Chapter 4

Superlight Clients

Will blockchain systems handle the whole world’s economic data for the centuries
to come? While such lofty visions are often ubiquitous in the cryptocurrency space,
it is a practical reality that today’s blockchain technology simply does not scale [8].
One aspect of scalability difficulty stems from the data required to be stored and sent
over the network when blockchain nodes synchronize with each other or bootstrap
from the network for the first time.

As explain in Chapter 2, these data contains two pieces of information: First,
the application data. This includes transactions, account balances, and smart con-
tract state evolution, and everything else that is included in the block data itself.
Secondly, the consensus data. This includes consensus-critical information such as
proof-of-work (or proof-of-stake) and nonces required to discover the longest chain
among a sea of shorter forks — everything that is part of the block header. Nodes
also need to reach consensus on the application data and ensure it follows the
protocol rules for validity, but the application data is not what makes consensus
happen. While application data can grow (or shrink) depending on the implemen-
tation, consensus data grows unboundedly at a constant linear rate in time. For
example, in Bitcoin, while items can be added or removed from the UTXO [28],
the number of block headers that need to be stored and communicated to newly
bootstrapping nodes grows at a constant rate of 1 block header per 10 minutes in
expectation [2]. Similarly, in Ethereum, while smart contracts can be added or
destroyed [72], and smart contract state variables added or removed, block headers
still grow at a constant rate of 1 block header per 12.5 seconds in expectation.

In this chapter, we leverage the NIPoPoWs developed in Chapter 3 to build
superlight clients. We modify our previous construction, charity superblock NIPo-
PoWs of Chapter 3, and introduce the distill construction, which we prove both
secure and succinct against all (1/3) adversaries (recall that the construction of
Chapter 3 was secure against all adversaries, but only optimistically succinct). One
critical difference of the construction is that the verifier compares competing proofs
against the same level µ, and so the weighting with the factors 2µA and 2µB becomes
unnecessary. However, proving these constructions secure and succinct requires
some additional theoretical developments.

Our mechanism permanently prunes the consensus data in a way that maintains
the blockchain’s security. Our protocol compresses the amount of consensus data
that needs to be stored and exchanged by nodes from linear to polylogarithmic —
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an exponential improvement. These reductions affect full nodes and miners alike,
and, to our knowledge, are the first of their kind. Our protocol is the first to
suggest that nodes need not hold onto chains at all; instead, full nodes and miners
collectively only hold a small sample of blocks. The rest of the blocks are lost
for ever, unless maintained by archival nodes, and are not necessary for achieving
consensus or bootstrapping new nodes. We note here that our proposed scheme is
not a sharding-based solution. All the miners of our protocol will store the same
data. Sharding solutions can be composed with our solution in a per-shard basis to
achieve even better scalability.

To achieve these reductions securely, we develop a mathematical framework for
the analysis of blockchain systems under suppression attacks in which an adversary
attempts to silence the generation of selected blocks. For our system to work cor-
rectly, it is imperative that the adversary faces difficulty in suppressing superblocks
(c.f. the suppression attacks and the necessity of certificates of badness in Chap-
ter 3). We prove that, while a 1/2 can perform suppression attacks as explored
previously, these blocks cannot be silenced by a 1/3 mining adversary. We begin
by giving a construction that allows for logarithmic space mining against 1/3 ad-
versaries, and later improve it to withstand 1/2 adveraries using the technique of
blinded mining.

In summary, this chapter develops the following notions:

1. We put forth a mechanism which provides exponential improvements in the
consensus data stored and exchanged between full nodes and miners in proof-
of-work settings. Our protocol requires the storage and exchange of only
polylogarithmic data, even when a new miner is bootstrapping from genesis.

2. We develop a mathematical framework for the analysis of suppression attacks,
and analyze the security of our protocol therein. Our protocol is secure under
honest majority assumptions (a 1/3 adversary for the simple construction, and
a 1/2 adversary for the blinded construction) in the random oracle model.

We present this chapter’s construction in stages. First, we discuss how an exist-
ing miner can compress their full state. Next, we discuss how a newly booting miner
can bootstrap from genesis using only the compressed state. Subsequently, we show
how a miner with only the compressed state can mine new blocks, giving rise to
both light and full miners. Finally, we assemble our complete protocol, in which all
miners are light miners. These constructions are accompanied by high-level secu-
rity arguments and building an intuitive understanding of why the protocol works.
After the full construction has been presented, the formal security analysis in the
random oracle and backbone model follows. This analysis part is also where our
mathematical framework for the treatment of suppression attacks is put forth. We
conclude by discussing the limitations and shortcomings of our protocol.

4.1 Consensus and Application Data
To pinpoint exactly our contributions to optimizations in consensus data, in this
section we review the difference between application data and consensus data which
was discussed in Chapter 2.

Blockchain systems maintain certain application state. This state can be used
to, for example, determine who owns how much money. There are two primary ways
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of representing ownership in today’s blockchains: A UTXO-based system, in which
the application state is comprised of the unspent transaction outputs that remain
available for spending; and an accounts-based system, in which the application
state is comprised of accounts and their balances. The first one is used primarily by
Bitcoin, while the second one is used by Ethereum.

The application state evolves over time when transactions are applied to it. A
transaction is a state evolution operator applied on the application state. Given
a previous application state and a transaction, a new application state can be
computed. Each block in the chain contains multiple transactions in a particular
order. As such, a block is itself a state evolution operator which applies multiple
transactions in order. By applying a block to a previous application state, a new
application state can be computed.

There are two schools of thought regarding what should be stored in a block. In
the first school of thought, only transactions (deltas) are stored. The application
state at the end of the blockchain can be computed by starting at the genesis ap-
plication state (an empty application state) and traversing the blockchain, applying
the state evolution described by each block, in order, and arriving at the final ap-
plication state. This is what Bitcoin does. The other school of thought stores both
transactions and the state after these transactions have been applied, a so-called
snapshot. In such systems, if one holds the longest chain, the application state at
the end of the chain does not need to be computed by applying any deltas. Instead,
a block near the end of the chain can simply be inspected and the application state
within it extracted.

It is possible to apply either school of thought to either application state model.
Bitcoin only keeps only deltas for a UTXO-based application state. However,
nothing prevents Bitcoin from committing to the newly computed UTXO in ev-
ery block [37, 108, 51], and in fact some Bitcoin forks have already done so. On
the other hand, Ethereum keeps both deltas and snapshots in blocks. While the
snapshots are not necessary, they are helpful. For the rest of this chapter, we as-
sume a proof-of-work blockchain in which each block commits to an application state
snapshot. The exact application state format (UTXO, accounts, or something else)
is irrelevant for our purposes.

In both schools of thought, it is imperative that the validity of the application
data (deltas or snapshots) is verified before a block can be accepted as valid. For
example, in a snapshotted system, miners must check that the snapshot committed
to a block was obtained by applying the transactions to the previous snapshot.

Let us now discuss how a bootstrapping node can synchronize with the rest of
the network. A bootstrapping node is a node holding only the genesis block and
booting for the first time. A wallet node is interested in the current application
state that concerns it. For example, it is interested to learn which UTXOs it owns,
or how much money is in its own accounts. The custodial history of how these
assets came to belong to it is irrelevant [51], beyond archival purposes, as long as
it can be sure that the assets it holds correspond to the correct application state
based on the history that took place. Inspecting or having access to this history
itself is not important for consensus purposes. As such, this node can synchronize
with the rest of the network using the SPV method [116]: It downloads only the
block headers to determine which chain is the longest one. It then inspects a block
near the end of the chain and extracts the balance from the Merkle tree leaf for its
own accounts, or for its UTXOs. This is sufficient to know the assets that it owns.
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In case some nodes are interested in the history of the blockchain, this history can
be maintained by special archival nodes or block explorers, but are not necessary
for the maintenance of the security of the network.

A miner bootstrapping their node can function in a similar manner: Download
only the block headers to determine the longest chain, then inspect a block near
the end of the chain to obtain the application state snapshot. Contrary to a wallet
node, the miner must obtain the whole application state so that it can validate new
pending transactions as they arrive. As such, the miner downloads the headers for
the whole chain, and the full blocks only for blocks near the end of the chain.

To be more precise, after the longest chain has been determined by comparing
block header chain lengths, the kth block from the end is inspected, its applica-
tion state snapshot is extracted, and the deltas in next k blocks are applied. This
is necessary because an adversary can place incorrect snapshots in the most re-
cent k blocks of a blockchain (folklore wisdom suggests k = 6 for Bitcoin). While
that blockchain will look valid and long to someone verifying only headers, it will
have snapshots corresponding to an incorrect application of deltas. However, the
adversary cannot modify blocks prior to that, due to Common Prefix.

Note here that the miner does not need to verify the veracity of all historical
transactions: If we assume that the majority of the computational power was honest
for the duration of history, this ensures that, at all times during the execution, the
longest chain represented the correct history of the world (with the exception of up
to k blocks towards the end). Under the honest majority assumption, this scheme is
as secure as full mining (but see the Discussion section at the end of this chapter for
a more nuanced take on this argument under temporary dishonest majority). This
is contrary to schemes such as SPV mining in which no snapshots are available.

Application data can grow or shrink. UTXOs can be created or deleted, accounts
and smart contracts can be created, updated and destroyed. State variables within
smart contracts can also be constructed or destructed. How the application data
grows is application-dependent. Typically, the application data will increase as
the execution continues. There are several attempts to optimize the size of these
data [38, 126, 86, 11, 10, 20, 142]. We remind the reader that, in this thesis, we do
not focus on these.

Instead, we focus on the size of the consensus data, that of block headers H(ctr
∥x ∥ s). Contrary to the application data, these data increase at a constant linear
rate, as block headers are added to the chain. No matter if channels or rollups
are used, block headers must keep getting added to the chain. A system designed
to survive for the centuries to come must provision for the scalability of this ever-
growing part. Even the solutions above that only download block headers do not
tackle that problem. As we will see, it is possible to reduce the consensus data and
neither store nor communicate all block headers.

A visualization of the comparison between application and consensus data is
shown in Figure 4.1. The consensus data (horizontal) grows at an expected constant
rate in time. The application data (vertical) may grow (or shrink) depending on
the application, and optimizations or pruning methods can be applied on top of
them.

A comparison of our pruned mining construction against other constructions
(including the construction of Chapter 3) is illustrated in Table 4.1. In all of these
protocols, we have a node (the prover) that maintains all the necessary state to
help a newly booting node (the verifier or client) synchronize with the rest of
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Figure 4.1: A comparison of consensus data (growing horizontally with time) and
application data (growing or shrinking vertically depending on the application).

the network. We compare the storage requirements for the prover, as well as the
communication complexity during bootstrapping. We are also interested in whether,
after synchronizing with the rest of the network, the verifier can function as a fully-
fledged miner on its own.

In this table, n denotes the number of blocks in the chain, δ is the size of the
transactions in a single block (which may vary with time), a is the size of the
snapshot or application state (which may also very with time), c is the size of a
block header, and k is the common prefix parameter, the number of blocks required
for stability (c.f., [76]). BTC Full indicates the full bitcoin miner that synchronizes
by downloading all block headers and transactions n(c+ δ). BTC SPV is a wallet-
only client that downloads only block headers and a single transaction, but requires
the prover (the node that serves it this data) to store the full history, as there
are no snapshots available. Ethereum is a blockchain which uses block headers
to synchronize, but makes use of snapshots. Here, the prover can prune block
contents, but not block headers (the nc term remains). For the last k blocks, the
transaction data of total size kδ are also needed to verify the veracity of the tip
of the chain; for the kth block from the end, only a snapshot of size a is needed.
The client can start mining on top of these snapshots (after the kδ transaction
data have been applied to the snapshot of size a). Note that a ≤ nδ and k ≤ n,
and so (asymptotically) n(c+ δ) ≥ nc+ kδ + a. Superblock and FlyClient Charity
NIPoPoWs (of Chapter 3) allow a full node to function as a prover, only sending
consensus data polylogarithmic in n, provided snapshots are available, but the
receiving verifie cannot function as a miner or a prover for others. In this chapter, we
present a protocol in which the verifier and prover both run on the same node. The
prover is only required to store polylogarithmic consensus data, and communication
complexity is also polylogarithmic. This is indicated by the term poly log(n)c. The
term ka, the application data, remains unaffected.
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Proposal Storage Communication Can mine?
BTC Full n(c+ δ) n(c+ δ) yes
BTC SPV nc nc no
Ethereum nc+ kδ + a nc+ kδ + a yes
Chapter 3 nc+ kδ + a poly log(n)c+ kδ + a no
FlyClient nc+ kδ + a poly log(n)c+ kδ + a no

This chapter poly log(n)c+ kδ + a poly log(n)c+ kδ + a yes

Table 4.1: A comparison of our results and other constructions. n: the number of
blocks in the chain; δ: size of transactions in a block; c: block header size; a: size
of snapshot; k: common prefix parameter

4.2 State Compression
How can a newly booting miner synchronize with the rest of the network if block
headers have been pruned? It seems impossible to do so securely. The constructions
explored in the previous chapters give a glimpse on how this can be achieved.

Among all the block headers that would be maintained by a traditional block-
chain protocol, we only keep a small sample of superblocks. Most of the block
headers headers will be pruned. The small sample of block headers that remains
will be polylogarithmic in size and used as evidence that work took place throughout
history. These sample block headers will be stored by our miners, and will also be
sent to new bootstrapping miners when they boot. No other block headers will be
stored or communicated beyond these carefully chosen samples. The samples will
be chosen to be the same for all miners. As such, some block headers will survive
throughout the network, while others will be gone for ever. Once we describe which
block headers to keep and which ones to throw away, the construction of our prover
will be complete. The rest of the chapter will be to construct a verifier that can
distinguish between honest and adversarial application state claims by examining
these samples and, of course, proving that this operation is secure.

The key idea is that, once NIPoPoWs have been developed, no blockchains need
to be maintained. Miners can only store NIPoPoWs. When mining, they can extend
their existing NIPoPoWs into new NIPoPoWs. The data broadcast on the network
can consist of NIPoPoWs only.

Let us begin our discussion by pinpointing which samples among all block head-
ers will be maintained. We will slightly change the sampling process as compared
to the previous chapters. We first present our compression algorithm: The code
that can take in a full chain and perform the sampling. These block header samples
will be the only ones that survive in our final protocol design. The compression
algorithm takes in a full chain and produces the desired samples, but will not form
part of our final protocol. In the final protocol, no full chain is to be found. How-
ever, the compression algorithm will prove educational in understanding the final
protocol (and can also be used, once, to transition a full miner into a light miner).
We will also reuse our compression algorithm in the final light miner construction,
despite no full chains ever appearing.

Similar to the charity construction of Chapter 3, our sampling will be performed
by only keeping sufficiently high-level superblocks and throwing away blocks of low
levels. We will keep very high levels (so, very few blocks) near genesis and far back
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in history. As we get closer to the present, we will start including more and more
samples, and so the threshold in our superblock level will decrease. Near the tip
(the most recent block) of the blockchain, we will eventually get down to level 0
and keep all blocks.

The samples that we keep will evolve as the blockchain grows. A sample that
was once selected for inclusion may be thrown away later. However, any sample
that is thrown away at some point will never again be needed in the future. This
property, of ensuring that the sampling is safe and that no samples discarded will be
needed again in the future, is the online property of our protocol. It will eventually
allow us to build a protocol where no full chain is needed, anywhere.

Given a chain C that we wish to compress, first, we keep the most recent k
blocks aside, and let us call them χ. These are unstable and will need to always be
stored. Besides, any miner that wishes to synchronize with us will need to look at
them to arrive at a valid snapshot. For the next part, we only consider the stable
part of the chain. For our sampling process, we begin by the highest level ℓ that
has at least 2m blocks in it. We will include this level in earnest: All ℓ-superblocks
will be included in our sampling. For every level below ℓ, we will include at least
the 2m most recently generated blocks of that level, but occassionally more. To
consider whether to include more blocks than 2m blocks in a level µ, we look at
the mth most recent block b in the level µ + 1 immediately above. We include all
µ-superblocks that are more recent than block b. Let us make this description more
precise by writing it out in pseudocode.

Our chain compression algorithm Compressm,k(C) is illustrated in Algorithm 31.
It uses the helper function Dissolvem,k(C) to obtain the highest level ℓ, the unstable
suffix χ and a set D[µ] of blocks sampled from the stable part of the chain at each
level µ ≤ ℓ. All of these levels are combined into a big chain π, which is sparse
at the beginning and dense towards the end. The final compressed state consists
of π, the stable part, and χ, the unstable part. Together, these form a chain. Let
us now examine the inner workings of Dissolvem,k(C). This function separates the
stable part C∗ of the chain and the unstable part χ. In the trivial case that our
stable chain has no more than 2m blocks, all of them are included. Otherwise, the
highest level ℓ with at least 2m blocks is extracted and included in earnest. Then,
the levels are traversed downwards. For every level µ, the last 2m blocks are always
included. This is captured by the term C∗↑µ [−2m:]. Additionally, we look at the
mth most recent block b from the end at level µ+1, that is C∗↑µ+1 [−m]. For level
µ, we also include all the blocks succeeding b, that is C∗↑µ {b:}.

139



Algorithm 31 Chain compression algorithm for transitioning a full miner to a
logspace miner. Given a full chain, it compresses it into logspace state.
1: function Dissolvem,k(C)
2: C∗ ← C[:− k]
3: D ← ∅
4: if |C∗| ≥ 2m then
5: ℓ← max{µ : |C∗↑µ | ≥ 2m}
6: D[ℓ]← C∗↑ℓ
7: for µ← ℓ− 1 down to 0 do
8: b← C∗↑µ+1 [−m]
9: D[µ]← C∗↑µ [−2m:] ∪ C∗↑µ {b:}
10: end for
11: else
12: D[0]← C∗
13: end if
14: χ← C[−k:]
15: return (D, ℓ, χ)
16: end function
17: function Compressm,k(C)
18: (D, ℓ, χ)← Dissolvem,k(C)
19: π ←

⋃ℓ
µ=0D[µ]

20: return πχ
21: end function

It may not yet be clear why this selection of block headers will lead to a secure
protocol, but let us argue that this sampling is polylogarithmic in |C|, considering
that m and k are constants that do not grow as the execution progresses.

Theorem 35 (Succinctness). The construction of Algorithm 31 samples a polylog-
arithmic number of blocks with respect to the length of the chain C.

Sketch. Firstly, the number ℓ of levels of interest is Θ(log |C|). Next, each level µ
has either 2m blocks or more. 2m is a constant, so this is irrelevant. But the more
blocks cannot be many more either: We are counting the µ-superblocks following
the mth block b at the level µ+1 above. How many can these be? They are indeed
about 2m. For, suppose for contradiction that they were many more than 2m. But
every block of level µ has a 1

2 probability of also being a µ+ 1 level block. If there
were, say, 4m instead of 2m superblocks of level µ following block b, then b would
not be the mth block from the end, but the 2mth one! With high probability (with
foresight, utilizing a Chernoff bound), 4m can be taken as an upper bound. As
such, there will be 2m log(|C|) + k blocks sampled in expectation, and, with high
probability, not many more.

We make this bound and argument more precise in the Analysis section.

4.3 Fast Synchronization
We have seen how a full miner can compress their state into a polylogarithmic
sample πχ of blocks. But what is the use of this? We will now build the other
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side of the protocol: A node, and future miner, booting to the network for the first
time, but holding only genesis G. The node is also parametrized by the security
parameters m and k. This node wishes to learn where to mine.

For now, let us assume that the rest of the network consists of full miners, and
only one node is a light node. The first step of the neophyte is to determine what the
current tip and snapshot are. The light miner can then start mining on top of that
tip, extending its application data snapshot. It does not need to know the blocks
preceding the tip! Of course, this node will not be helpful towards bootstrapping
yet more nodes, but no matter — it can still mine as if it were a full miner, and
just as securely, as long as the tip can be correctly discerned.

The protocol works as follows. Initially, the newly booting node (a NIPoPoW
verifier), connects to multiple full nodes (the NIPoPoW prover) Each of these full
nodes compresses their state using Algorithm 31 and sends the compressed state, or
proof Π = πχ, to the verifier. More concretely, the full node sends the block headers
corresponding to the blocks in π (of size c · poly log(n)). For the blocks in χ, the
full node sends the whole application snapshot (of size a) stored in χ[−k] and the
transactions (of size kδ) stored in χ. Naturally, the adversary can send any string
as a claimed proof. The verifier checks that Π forms a chain, i.e., that all blocks
are connected with interlinks and so they have been produced in the chronological
order presented, and also that the first block in Π is the genesis block G that it
knows. It then extracts the last k blocks as χ and the rest as π. It inspects the
application data snapshot from χ[−k] and ensures that the transactions in χ can
be cleanly applied. This allows it to obtain the application state at the end of
πχ, which, in honest cases, is the same as the application snapshot at the end of
the underlying blockchain. If any of these checks fail, the particular connection is
considered compromised and closed.

The verifier receives and verifies a series of such proofs, each consisting of a
stable part π and an unstable part χ, with |χ| = k. Given multiple such proofs
Π1,Π2, · · · ,Πv, the prover begins inspecting the proofs and comparing one against
the other in a pairwise fashion. First, Π1 is compared against Π2, and one of them
is deemed to be the best (using a mechanism we will soon study). The process
continues until only one of them remains. As long as at least one proof was honestly
generated, our protocol will arrive at a suffix χ that is admissible. This means that
our light node will arrive at a snapshot which a full node miner booting for the first
time from genesis could also have arrived at. Upon taking this decision, the light
miner stores πχ in its state.

The light miner can then start mining on top of χ[−1] to produce further blocks
and to fully verify the validity of incoming network transactions in its mempool.
After all, it is holding onto an application snapshot. These blocks can be broadcast
to the network and will be accepted by the rest of the miners, despite our light
miner not holding the full chain leading from genesis up to the newly mined block.
The light miner can also understand and verify newly mined blocks of others. It
can also deal with chain reorganizations: In case a reorganization of up to k blocks
occurs, the light miner holds the whole of χ and can verify the state transitions
completely. As for reorganizations of more than k blocks long, these will never
occur (except with negligible probability) due to the Common Prefix property.

As this miner is not interested in helping bootstrap others, it can even throw
away π once it has booted up. Furthermore, every time a new block is mined
(either by itself or by someone else), it can append it to χ and then truncate χ to
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only keep the k most recent blocks. However, in the full protocol, described in the
next section, the miner will need to hold on to (and update) π to allow others to
bootstrap.

Let us now study the security-critical portion of our protocol, namely how the
verifier compares two different proofs Π and Π′. Given two proofs Π and Π′, the al-
gorithm must decide which one is best or captures the most proof of work. In other
words, it must conceptually correspond to the longest underlying chain, or the un-
derlying chain with the most work. The comparison algorithm is illustrated in Al-
gorithm 32. The comparison is performed as follows. Initially, the two proofs Π and
Π′ are verified for syntactic validity: That Π begins with G, it is a chain, and that
χ contains valid transactions extending the application data snapshot contained in
χ[0]. The comparison continues by invoking the Dissolvem,k(Π) function of Algo-
rithm 31 on each of Π and Π′. As before, this function extracts the maximum level ℓ
containing at least 2m blocks. Then it picks the required blocks from each level, with
at least 2m blocks per level, but also a sufficient number of blocks per level to span
the last m blocks in the level above. Contrary to the invocation in Algorithm 31,
we are not passing the full chain to the function; instead, we are passing a chain
which has already undergone compression. As such, if the compressed state was
honestly generated, the triplet (χ, ℓ,D) on the verifier end will be the same as the
triplet on the prover end, because compressm,k(C) = compressm,k(compressm,k(C))
(but may be something else in case of adversarial proofs).

Algorithm 32 The state comparison algorithm.
1: function maxvalidm,k(Π,Π′)
2: if Π is not valid then
3: return Π′

4: end if
5: if Π′ is not valid then
6: return Π
7: end if
8: (χ, ℓ,D)← Dissolvem,k(Π)
9: (χ′, ℓ′,D′)← Dissolvem,k(Π

′)
10: M ← {µ ∈ N : D[µ] ∩ D′[µ] ̸= ∅}
11: if M = ∅ then
12: if ℓ′ > ℓ then
13: return Π′

14: end if
15: return Π
16: end if
17: µ← minM
18: b← (D[µ] ∩ D′[µ])[−1]
19: if |D′[µ]{b:}| > |D[µ]{b:}| then
20: return Π′

21: end if
22: return Π
23: end function

Only once the two proofs are stratified into levels D, the comparison algorithm
attempts to choose a level µ at which the comparison will be performed. This level
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is the minimum level µ for which both provers have provided blocks (note that it
is not sufficient that both provers have provided the same block at the same level;
it must also have been selected in the same index of D). In the edge case that
no such level can be found, the prover with the higher ℓ wins (if no such level is
found and they share the same level, it is irrelevant which prover will win). In the
normal case that a level is found, then the comparison takes place by taking account
only blocks of that level. The comparison begins by finding the most recent block
shared by the two parties at that level, (D[µ] ∩ D′[µ])[−1]. We call this the lowest
common ancestor b. The blocks of the selected level following block b (which must
necessarily be disjoint by the definition of b) are then counted, and the party with
the most blocks wins.

Note the difference between the construction of this chapter (the distill construc-
tion) and the construction of Chapter 3 (the charity construction): The comparison
here is performed in a unified level µ, and no weighting is applied.

Let us give a high-level intuition of why this protocol chooses the longest chain.
The key idea is that, in addition to the Common Prefix property holding for regular
blocks, this property also holds for µ-superblocks at any level. More precisely, if
there is a forking point b, the adversary could not have produced more than m
superblocks of level µ faster than the honest parties can produce m superblocks of
level µ. This property stands at the heart of the following theorem.

Theorem 36 (Security). When the honest verifier of Algorithm 32 receives a proof
Π constructed by an honest party using Algorithm 31 and a proof Π′ constructed by
the adversary, it will decide in favour of the honest proof, unless the adversary is
playing honestly and Π′ was generated according to protocol.

Sketch. First, consider the case that M ̸= ∅. If the comparison is performed at
level µ = 0, this is akin to comparing traditional chains and the theorem holds due
to the Common Prefix property.

If the comparison is performed at a level µ > 0, then we apply the extended
Common Prefix property at level µ. By the minimality of µ, there will be at least
m blocks of the appropriate level following b and so the honest parties will win.

Lastly, if M = ∅, then we can apply the extended Common Prefix property at
the highest level ℓ achieved by the honest party. By construction, the honest party
holds at least 2m blocks at this level. Because the adversary must have achieved a
better ℓ′ > ℓ to win, she must also have at least 2m blocks of a higher level, but
these are also of level ℓ. But this contradicts the extended Common Prefix property,
giving us the desired result.

While this gives some intuition about why the protocol is designed the way it is,
the core security argument pertains to arguing why the extended Common Prefix
property holds. We formally prove this statement in the Analysis section for 1/3
adversaries, where we also make the security theorem more precise.

4.4 Mining New Blocks
So far, we have used full nodes to help bootstrap newly booting miners. Can light
miners be used to bootstrap newly booting miners instead? If we can achieve this,
then we might as well get rid of full nodes altogether.
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Our light miner already holds a valid proof Π = πχ corresponding to an un-
derlying honest full node chain C at the time it is bootstrapped by others. Before
further blocks are mined on the network (either by itself, or by others), it can send
this Π to newly booting miners, and they, too, will be convinced of the current
application data snapshot. The question is how to update this Π when a new block
is mined. Suppose a new block b is mined on top of C, either by our light miner
or by someone else. The underlying honest chain then becomes C′ = Cb. Can we
produce a proof Π′ corresponding to C′ by only utilizing Π? More specifically, given
Π = Compressm,k(C) and b, but not given C, can we produce Π′ = Compressm,k(Cb)?
Indeed we can. In fact, it is as simple as evaluating C′ = Compressm,k(Πb).

Theorem 37 (Online). Consider Π = Compressm,k(C) generated about an under-
lying honest chain C, and a block b mined on top of C. Then Compressm,k(Cb) =
Compressm,k(Πb).

Proof. Consider which blocks are sampled and which blocks are pruned when call-
ing Compressm,k(Cb). Clearly the block b will be included in both the output of
Compressm,k(Cb) as well as the output of Compressm,k(Πb). All the other blocks
selected by Compressm,k(Cb) will already exist in Π, and in the correct positions.
For, the blocks selected from a level are the last 2m of a level, or the lastm spanning
the level above, and adding block b at the end can only render a previously sampled
block irrelevant, but not add further block requirements from the past.

Note also that, when mining a new block b, all the data required to compute
the interlink pointers of b is readily available in πχ, as π contains the most recent
2m blocks of every level, and only the most recent one is needed for interlinking.
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Algorithm 33 The final logspace miner.
1: Π← ∅
2: function Initm,k(Π)
3: for Π′ ∈ Π do
4: Π← maxvalidm,k(Π

′,Π)
5: end for
6: end function
7: function Minem,k(x)
8: b← pow(Π[−1], x)
9: if b ̸= ϵ then
10: Π← Compressm,k(Πb)
11: broadcast(Π)
12: end if
13: end function
14: upon BootstrapRequest do
15: return Π
16: end upon
17: upon NewBlockReceived(χ′) do
18: χ← Π[−k:]
19: π ← Π[:− k]
20: if χ′ is a chain ∧ χ′[0] ∈ χ then
21: b← (χ ∩ χ′)[−1]
22: if |χ′{b:}| > |χ{b:}| then
23: Validate χ′ state transitions starting from b
24: Π← Compressm,k(πχ{:b}χ′{b:})
25: broadcast(Π)
26: end if
27: end if
28: end upon

Our final light miner therefore works as follows. It maintains a current proof
Π = πχ and mines using χ[−1] as the chain tip. If it is successful in mining b on
top of χ, it replaces Π by setting it to Π′ = Compressm,k(Πb) and broadcasts this to
the network. As all of the other online miners, light or full, will hold their own χ∗

not differing more than k blocks from χ, it is, in fact, sufficient that it broadcasts
the new χ′ = χ[1:]b portion of Π′. Now the newly computed Π corresponds to the
chain Cb, which the miner never sees, as it has been pruned. Regardless, Π can be
used to bootstrap new light miners from genesis.

Consider now the case that our light miner holds a Π = πχ and a different miner
mines a new block b. By the Common Prefix property, this block will not deviate
more than k blocks from the χ that our light miner already holds. Typically,
it will be just a block on top of χ, but occassionally it could correspond to a
chain reorganization up to k blocks long. In the case of a reorganization, the light
miner requests the last k blocks χ′ on top of which b was mined. These can be
provided to us if the block b was mined by a light or a full miner, as both hold
and can send χ′. The blocks in χ′ will intersect the previously known χ at some
fork point. The light miner checks that the transactions included in this χ′ can
be applied to the application data snapshot that the light miner has independently
calculated for the fork point. This amounts to full block validation. The light
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miner also checks that the newly mined block really does correspond to a longer
chain and that a reorganization is warranted by ensuring that there are more blocks
in χ′ after the fork point b than there are in χ after the fork point (i.e., that
|χ′{b:}| > |χ{b:}|). It then replaces the stored proof by setting Π to be the proof
corresponding to πχ when the portion of χ after the most recent common block
between χ and χ′ is replaced by the blocks in χ′, i.e., it updates its stored proof to
be Π′ = Compressm,k(πχ{:b}χ′{b:}).

The light miner is illustrated in Algorithm 33. At this point, full nodes are no
longer necessary. Light miners can bootstrap from genesis. They have all the data
needed to mine on their own, and to validate newly mined blocks from the network.
If a newly booting light miner wishes to synchronize with the network, they have
sufficient data to help them do so. The blockchain protocol remains exactly the
same as in traditional blockchains, but all the instances of chains are replaced by
proofs instead. Light miners mine on top of their current proof instead of mining
on top of a chain. When they discover a new block, they send the newly computed
proof instead of a chain. This concludes our construction.

4.5 Block Suppression
We begin our analysis by developing a probabilistic framework to study whether
the adversary can suppress blocks of her choice. The central definition here is the
notion of a Q-block, a block that possesses a certain property — such as being
a µ-superblock for some µ ∈ N. The main theorem we will eventually prove is a
generalization of the Common Prefix property: That the Common Prefix property
holds for blocks filtered by any attribute Q. This will allow us to prove our protocol
is secure by instantiating Q-blocks as µ-superblocks.

We define a Q-block as a block satisfying a predicate Q on its hash. Note that
this evaluation does not depend on any particular execution.

Definition 60 (Q-block). A block property is a predicate Q defined on a hash
output h ∈ {0, 1}κ. Given a block property Q, a valid block with hash h is called a
Q-block if Q(h) is true.

The block properties we are interested in will be evaluated asQ(H(⟨ctr, s, x⟩)) in
actual executions for particular blocks. As such, we will be interested in properties
which are polynomially computable given h as the input.
Definitions of random variables.

Recall a query of a party is successful if it submits a triple (ctr, s, x) such that
H(ctr, s, x) ≤ T . Let us generalize these definitions for block properties. Consider
a block property Q. Let ξQ = Pr[Q(h)|h ≤ T ], when h is uniformly distributed over
the range of the hash function. For each round i, query j ∈ [q], and k ∈ [t] (the kth
party controlled by the adversary), we define Boolean random variablesXQ(i), YQ(i)
and ZQ(i, j, k) as follows. If at round i an honest party obtains a Q-block, then
XQ(i) = 1, otherwise XQ(i) = 0. If at round i exactly one honest party obtains a
Q-block, then YQ(i) = 1, otherwise YQ(i) = 0. Regarding the adversary, if at round
i, the jth query of the kth corrupted party obtains a Q-block, then ZQ(i, j, k) = 1,
otherwise ZQ(i, j, k) = 0. Define also ZQ(i) =

∑t
k=1

∑q
j=1 ZQ(i, j, k). For a set

of rounds S, let XQ(S) =
∑

r∈S XQ(r) and similarly define YQ(S) and ZQ(S).
We drop the subscript from all variables X,Y, Z, when the Q-block is simply the
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property of being a valid block. Further, if X(i) = 1, we call i a successful round
and if Y (i) = 1, a uniquely successful round.

As in the backbone model, the probability f that at least one honest party
computes a solution at given round is an important parameter. Writing p = T/2κ

for the probability of success of a single query, we have

(1− f)pq(n− t) ≤ f = E[X(i)] = 1− (1− p)q(n−t) ≤ pq(n− t).

The following bounds relate the expectations of the random variables defined above
to f , for all i and block properties Q.

ξQf ≤ E[XQ(i)] ≤
ξQf

1− f
, ξQf(1− f) < E[YQ(i)],

E[ZQ(i)] ≤
ξQf

1− f
· t

n− t
.

For the derivations of these inequalities see Garay et al. [58].
Typical executions. We now define our typical set of executions, extending the
typical executions defined in Chapter 2. This follows the backbone model, but
extended to include block properties. Informally, this set consists of those executions
with polynomially many rounds and with the property that all the random variables
of interest over sufficiently many (at least λ = Ω(κ)) consecutive rounds do not
deviate too much from their expectation. To this end, recall the following terms.
An insertion occurs when, given a chain C with two consecutive blocks B and B′,
a block B∗ created after B′ is such that B,B∗, B′ form three consecutive blocks of
a valid chain. A copy occurs if the same block exists in two different positions. A
prediction occurs when a block extends one which was computed at a later round.

Definition 61 (Typical execution). For a real ε ∈ (f, 1
4 ), integer λ, and a collection

of polynomially many block properties Q, we say an execution is Q-typical (or simply
typical), if the following hold.

• For any Q ∈ Q and any set S of at least λ/ξQ consecutive rounds we have

(1− ε)E[XQ(S)] < XQ(S) < (1 + ε)E[XQ(S)], (4.1)
(1− ε)E[YQ(S)] < YQ(S), (4.2)

ZQ(S) < E[ZQ(S)] + εE[YQ(S)]. (4.3)

• No insertions, no copies, and no predictions occurred.

Theorem 38. If t < (1− δ)(n− t) with δ > 3ε+ 3f , an execution is typical with
probability 1− e−Ω(ε2fλ).

Proof. The proof uses standard Chernoff bounds, along the lines of [58]. We just
note that the variables XQ(i) (and similarly YQ(i) and ZQ(i, j, k)) are independent
Bernoulli trials for each Q and successful with probability Θ(ξQf). In addition, a
union bound is applied over all Q.

Lemma 39. Assume t < (1− δ)(n− t) with δ > 3ε+3f and a Q-typical execution.
Then, the following hold for any Q ∈ Q and any set S of at least λ/ξQ consecutive
rounds.
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(a) (1− ε)ξQf |S| < XQ(S) < (1 + ε) · ξQf
1−f · |S|.

(b) (1− δ
3 )ξQf |S| < (1− ε)ξQf(1− f)|S| < YQ(S).

(c) ZQ(S) < ( t
n−t ·

1
1−f + ε) · ξQf |S| ≤ (1− 2δ

3 )ξQf |S|.

(e) ZQ(S) < YQ(S).

Proof. This follows with straightforward calculations from the properties of a typical
execution, the bounds on the expectations of the involved random variables, and
the assumed bounds on t/n, δ, ε and f .

We now establish an upper bound in the number of Q-blocks an adversary can
suppress, regardless of what attack method she follows.

Uniquely successful rounds have the following important property [58].

Lemma 40 (Pairing). For any i and any pair of distinct blocks C[i] and C′[i], if
C[i] was computed by an honest party in a uniquely successful round, then C′[i] was
computed by the adversary.

Proof. Let r be the uniquely successful round that C[i] was computed. No honest
party would extend C′[i−1] at a round later than r, since every honest party would
have a chain of length at least i. Similarly, if an honest party computed C′[i] at
some round earlier than r, then no honest party would have extended C[i − 1] at
round r. Finally, C′[i] cannot have been computed by an honest party at round r,
since r was a uniquely successful round.

Lemma 41 (Suppression). If r is a uniquely successful round and the corresponding
block does not belong to the chain of an honest party at a later round, then there is
a set of consecutive rounds S such that r ∈ S and Y (S) ≤ Z(S).

Proof. Let C be the chain of the honest party that was successful at round r and
u the depth of the corresponding block. Let r′ be the first round after r in which
an honest party has a chain C′ which does not contain block C[u]. Let C′[u′] the
last block of C′ at round r′. Let C[u∗] = C′[u∗] be the last honest block on the
common prefix of C and C′, and let r∗ be its timestamp. We claim that the set
S = {i : r∗ < i < r′} satisfies the requirements of the statement. Clearly, r ∈ S.
Let us verify that Y (S) ≤ Z(S). Indeed, if C∗[v] is any block computed during a
uniquely successful round i ∈ S, it must hold u∗ < v ≤ u′. The first inequality
is because the party computing C∗[v] knows of C[u∗] (it was announced at round
r∗ and received by round i > r∗) and would not mine on a shorter chain. The
second inequality holds because v > u′ contradicts an honest party having a chain
of length u′ at round r′ > i (since C∗[v] was received by round r′). The inequality
then follows by Lemma 40, since it is always possible to find a block distinct from
C∗[v] on C or C′ (we may use C′, unless C∗[v] is on C′, in which case—due to the
minimality of r′—we have v < u and we can use C).

An observation that follows from the above lemma is that if the adversary man-
ages to suppress a Q-block from the chain of an honest party and this Q-block was
computed in a uniquely successful round, then we can associate with it an adver-
sarial block. In particular, if r is a uniquely successful round and the corresponding
block does not belong to the chain of an honest party at a later round, then there is
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an associated adversarial block of the same height that was adopted by an honest
party.

We now state and prove our Unsuppressibility Lemma. Informally, the lemma
says that if the number of blocks the adversary obtained in a set of consecutive
rounds is z and the number of the uniquely successful blocks the honest parties
obtained in the same set of rounds is y, then there exist y − 2z blocks that will
always belong to the chain of every honest party. It follows that if the power of
the adversary is bounded below 1/3 of the total power, then with overwhelming
probability there will be a nonzero number of such blocks.

An important note with respect to the Unsuppressibility Lemma is the follow-
ing. Fix all the randomness the random oracle requires for a given execution. This
determines the successful queries of every party and therefore determines the pa-
rameters y and z above. The observation is that even if these random coins are
revealed to the adversary at the beginning of the execution, one can determine pre-
cisely which y − 2z blocks —and no matter the adversary’s strategy— will always
belong to the chain of every honest party.

Lemma 42 (Unsuppressibility). In a typical execution, every set of consecutive
rounds U has a subset S of uniquely successful rounds, such that

• |S| ≥ Y (U)− 2Z(U)− 2λf( t
n−t ·

1
1−f + ε) and

• after the last round in S the blocks corresponding to S belong to the chain of
every honest party.

Proof. Let U ′ be the set of consecutive rounds that contains U and also the λ
rounds that come before and after U . By Lemma 41, we may take S to contain all
those uniquely successful rounds r ∈ U such that for any set of consecutive rounds
S′ ⊆ U ′ containing r, Y (S′) > Z(S′). Note that, in a typical execution, no such
S′ may contain elements outside U ′. Letting y = Y (U) and z = Z(U), we need to
show y − |S| ≤ 2z + 2(1− 2δ

3 )λf .
Let us focus on the uniquely successful rounds not in S. Consider a collection

T of sets of consecutive rounds with the following properties.

• For all T ∈ T , Y (T ) ≤ Z(T ).

• For each r ∈ U \ S, there is a T ∈ T that contains r.

• |T | is minimum among all collections with the above properties.

We now observe that the minimality condition on T implies that no round r with
Zr > 0 belongs to more than two sets of T . If that was the case, then there would
be three sets T1, T2, T3 in T with T1∩T2∩T3 ̸= ∅. But then, we could keep the two
sets with the leftmost and rightmost endpoints, contradicting the minimality of T .
Furthermore, no round in U ′ \ U belongs to more than one set of T . Thus,

y − |S| =
∑

i∈U\S

Yi ≤
∑
T∈T

Y (T ) ≤
∑
T∈T

Z(T ) ≤ 2z + Z(U ′ \ U).

The third inequality holds because every round in which the adversary was success-
ful is counted at most twice inside U and at most once outside U (by the discussion
above the inequalities). Finally, using |U ′ \ U | ≤ 2λ and Lemma 39(c) we obtain
the stated bound.
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The proof of this lemma is quite generous to the adversary on two accounts.
First, it reveals to the adversary all coin flips in the beginning of the execution.
Second, it gives the adversary two choices for each one of his blocks, and assumes
that he will be able to choose among these as he sees fit. Nevertheless, we conjecture
that the bound y− 2z cannot be substantially increased in the case the property is
rare.

We can now prove that an adversary with less than 1/3 of the total mining
power cannot create a chain with more Q-blocks than an honest chain. Such a task
would require the adversary to both suppress many Q-blocks from the honest chain
and to obtain many of them for the adversarial chain.

Lemma 43 (Q-block Common-Prefix). Assume t < ( 13 − δ)n with δ > 3ε+3f and
a Q-typical execution. Consider a round at which a chain C is adopted by an honest
party and suppose there exist another chain C′ such that C′ \ (C′ ∩ C) has at least
22λξQf Q-blocks. Then, with overwhelming probability, C has more Q-blocks than
C′.

Proof. Assume an execution in which the assumptions of the lemma hold. Let r∗
be the round on which the last honest block on C∗ = C ∩ C′ was computed (if no
such block exists let r∗ = 0) and define the set of rounds S = {i : r∗ < i ≤ r}. We
will study the execution during the rounds in S. To that end, let W ′ denote the set
of adversarial queries on C′ \ C∗ at some round at least λ greater from r∗. Denote
by W the rest of the adversarial queries in S.

We first observe that no query in W ′ could have suppressed a Q-block on C. As
in the proof of Lemma 41, in such a case there would exist a set of consecutive rounds
|S∗| ≥ λ such that Y (S∗) ≤ Z(S∗). This contradicts the last item of Lemma 39.

From this observation and the Unsuppressibility Lemma, there are at least
Y (S) − 2Z(W ) − 2λf( t

n−t ·
1

1−f + ε) blocks that the adversary cannot suppress.
Each of these is a Q-block independently with probability ξQ. Under our assump-
tions, 2( t

n−t ·
1

1−f + ε) < 1−δ
1−ε . We conclude that, with overwhelming probability,

there are at least

(1− ε)ξQ ·
[
Y (S)− 2Z(W )

]
− (1− ε)λξQf

Q-blocks on C \ C∗.
On the other hand, the number of Q-blocks on C′ \ C∗ is at most the Q-blocks

from the W ′ queries plus the Q-blocks from the initial λ rounds. The latter can be
shown to be at most 3λξQf . For the former, using Lemma 44 (with Fj = 1 when
j ∈ W ′ and Mj = 1 when it resulted in a Q-block) and Lemma 39, in a typical
execution, are at most (1 + ε)ξQZ(W ′). Thus, there at most

(1 + ε)ξQp|W ′|+ 3λξQf.

Q-blocks on C′ \ C∗. Since these are at least 22λξQf , it can be shown that the
difference between the last two displayed expressions is at least (1− ε)ξQ · [Y (S)−
2Z(S)]. This is positive in a typical execution in which the power of the adversary
is bounded below 1

3 − δ the total power.

In the above proof, we made use of the following lemma pertaining to the distri-
bution of products of random variables. For completeness, we also include its proof
here.

150



Lemma 44. For each j ∈ N, let Fj and Mj be Boolean random variables such that
E[Mj ] = ζ and Mj is independent of Fi for i ≤ j and independent of Mi for i ̸= j.
For any ε ∈ (0, 1),

Pr
[∑

FjMj > (1 + ε)ζ
∑

Fj

∧ ∑
FjMj ≥ k

]
≤ e−Ω(ε2k).

Proof. Since
∑

n≥k e
−Ω(ε2n) = e−Ω(ε2k), by the union bound it suffices to show that

Pr
[
(1 + ε)ζ

∑
Fj < k

∧ ∑
FjMj = k

]
≤ e−Ω(ε2k). (4.4)

In the summations below, let α range over words in {0, 1}∗ and β be any word in
{0, 1}ℓ of weight k. For a fixed α, define Jα = {j ∈ N : Fj = 1} and B = (Mj)j∈Jα .
Also, for j ∈ N, let Ej denote the event {(∀i < j)(Fi = αi and i ∈ J ⇒Mi = βi)}.
Then,

Pr[B = β] =
∑
α

Pr[B = β,A = α]

=
∑
α

∏
j

Pr[Fj = αj |Ej ]
∏
j∈J

Pr[Bj = βj |Ej , Fj = αj ]

=
∑
α

∏
j

Pr[Fj = αj |Ej , B = β]
∏
j∈J

Pr[Mj = βj ]

=
∑
α

Pr[A = α|B = β] · ζk(1− ζ)ℓ−k ≤ ζk(1− ζ)ℓ−k.

Thus, letting β range over all words in {0, 1}∗ of length less than k
(1+ε)ζ and weight

k ending with 1, the left-hand side of (4.4) is equal to∑
β

Pr[B = β] ≤
∑

k≤ℓ< k
(1+ε)ζ

(
ℓ− 1

k − 1

)
ζk(1− ζ)ℓ−k.

That is, the probability is at most that of a random variable following a negative
binomial distribution with parameters k (the number of successes) and ζ (the prob-
ability of success) is less than k

(1+ε)ζ . The bound follows from standard Chernoff
bounds.

4.6 Analysis
We are now ready to prove the construction of Algorithms 31 and 32 secure and
succinct. For security, we denote Π the proof presented by the honest party and Π′

the proof presented by the adversary (but these can be given to the verifier algorithm
in any order). We can safely assume that these proofs were both generated at round
r (the adversary could have generated the proof earlier, but not later, than the
honest party). The honest proof Π was generated based on some honest underlying
chain C using Algorithm 31. On the other hand, we have no guarantees about how
the adversarial proof Π′ was generated. It may be based on some underlying chain
mined according to protocol, or not. In any case Π′ does form a chain and its blocks
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must have been mined in order, as the verifier ensures this. However, there may
not exist intermediate blocks covering the whole proof-of-work as desired.

Security mandates that the verifier chooses the honest proof, Π. However, it is
possible that the verifier also chooses the adversarial proof, Π′, without raising any
issue, as long as it extends the honest proof at a fork point no longer than k from
the tip. To see why this is fine, note that an adversary can already do this at the
full blockchain: According to the Common Prefix property, she can fork at a block
at most k blocks deep from the honest blockchain’s end and have up to k blocks
following the fork point. In this case, if it happens that the verifier has chosen Π′, we
require that (Π′ ∩ C)[−1] ∈ C[−k:]. This means that the adversarial proof extends
the honest chain at some fork point in C[−k:]. But let us contemplate what this
entails: It means that the portion Π′{(Π′ ∩C)[−1]:} is just a valid 0-level extension
of the honest chain. As such, requiring |Π′{(Π′ ∩ C)[−1]:}| ≥ |C{(Π′ ∩ C)[−1]:}|
would produce a competitive adversarial chain that is longer than the honest chain
and it would be perfectly acceptable to a full node (and by the common prefix
property, this difference cannot be larger than k blocks long). We must clearly
allow for this possibility — but it is not a problem, as this situation can occur in
full node executions, too. This property also holds trivially in case the honest proof
is chosen.

Theorem 45 (Security). Consider an arbitrary 1
3 -bounded PPT adversary A in

a typical execution. Let Π be a proof generated by an honest party at round r
using Algorithm 31 by passing his underlying chain C. Let Π′ be an arbitrary
proof generated by the adversary at round r. Let Π∗ be the proof accepted by the
verifier using Algorithm 32. Then |Π∗{(Π∗ ∩ C)[−1]:}| ≥ |C{(Π∗ ∩ C)[−1]:}| with
overwhelming probability.

Proof. Let C′ = Π′. We need to show that, either Π will be the proof accepted by
the verifier, or Π∗ is a proof extending the honest chain that is longer at level 0, as
mandated by the theorem statement.

Let us consider first the case that a µ of Algorithm 32 as above exists. When
µ = 0, the verifier determines the longer chain and always correctly accepts the
corresponding proof. That is, the verifier will either choose Π∗ = Π, or, in case
Π∗ = Π′, the verifier will choose the adversarial proof Π′ which contains a χ′ that
extends the honest chain’s χ at level 0 (up to k blocks long) with a longer alternative.
This is the only case in which Π′ can win. For the other cases, we will now argue
that the adversary cannot win.

Let us now focus on the case 0 < µ ≤ ℓ. Note that, since D[µ−1]∩D′[µ−1] = ∅
(by the minimality of µ), both superchains must have at least m blocks after their
common block b. The Q-block Common-Prefix Lemma implies that Π is accepted.

Next, consider the case that no such µ exists. Clearly, ℓ ̸= ℓ′ (otherwise D[ℓ] ∩
D′[ℓ′] would contain the genesis block) and we need to argue that ℓ > ℓ′. Assume
—towards a contradiction— that ℓ < ℓ′ and consider the statement of the Q-block
Common-Prefix Lemma instantiated with blocks of level ℓ + 1 as the Q-blocks.
Together with ℓ < ℓ′, it implies that C′ has fewer thanm Q-blocks after the common
block with C (since C has fewer Q-blocks than C′ in total, it must also have fewer
on its fork; and they must necessary share a common block, since both must begin
with genesis). But then, both C and C′ have fewer than m Q-blocks after their
common block. Since D[ℓ] ∩ D′[ℓ] = ∅ by assumption, this cannot be the case.
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Theorem 46 (Succinctness). In a typical execution with t < ( 13−δ)n with 3ϵ+3f <
δ < 1

3 and letting m = λ, an honest miner’s state is in O(m2 log(r)) at round r.

Proof. As t < ( 13 − δ)n with 3ϵ + 3f < δ < 1
3 , therefore c = E[Y ] − 2E[Z] −

2λf( t
n−t

1
1−f + ϵ) will be a positive constant and for sets of consecutive rounds U

with |U | ≥ λ, we will have Y (U)− 2Z(U)− 2λf( t
n−t

1
1−f + ϵ) > (1− ϵ)c|U |.

Consider a state Π generated by an honest prover and suppose for contradiction
that |Π| ∈ ω(m log(r)), where r indicates the current round number. From the
security of the scheme, this state will correspond to some underlying chain C such
that Π is the compression of C. Consider the variables (D, χ) = Dissolvem,k(C). As
|χ| = k is constant, therefore |

⋃
d∈D d| ∈ ω(m log(r)). Let ℓ = |D|. It holds that

ℓ ∈ O(log(|C|)). Consequently,
∑

d∈D |d| ∈ ω(m log(r)). Therefore there must exist
some µ such that |D[µ]| ∈ Ω(λ2). Consider the maximum such µ.

We distinguish two cases.
Case 1: µ = ℓ. Then consider D[ℓ]. Let u0 denote the round during which D[ℓ][0]

was generated and u1 denote the round during which D[ℓ][−1] was generated and
consider the set U of consecutive rounds from u0 to u1. As D[ℓ] forms a chain, we
have that |U | ≥ |D[ℓ]| > λ. Applying the Unsuppressibility Lemma, we obtain that
at least |S| ≥ c|U | = c|D[ℓ]| ∈ Ω(λ) rounds of U must have been uniquely successful
and belong to the chain of every honest party. Therefore |D[ℓ]↑ℓ+1 | ≥ (1 − ϵ) |S|2 .
By the definition of ℓ this is impossible.

Case 2: 0 ≤ µ < ℓ. By maximality of µ, we have |D[µ + 1]| ∈ O(λ), but
|D[µ]| ∈ Ω(λ2). By the definition ofD[µ] = C[:−k]↑µ [−2m:]∪C[:−k]↑µ {C[:−k]↑µ+1

[−m]:}, clearly |C[:−k]↑µ [−2m:]| = 2m so necessarily C[:−k]↑µ {D[µ+1][−m]:} ∈
Ω(λ2). Therefore there exist blocks A and B in D[µ+1] and D[µ] such that |D[µ+
1]{A:Z}| = 1, but |D[µ]{A:Z}| ∈ ω(λ). Similarly to case 1, consider the rounds
u0 and u1 during which blocks A and Z were generated respectively and the set of
consecutive rounds U from u0 to u1 with |U | ∈ ω(λ). Using the Unsuppressibility
Lemma, there must exist a set of uniquely successful rounds |S| ≥ c|U | whose blocks
have been adopted by all honest parties and of which at least (1− ϵ) |S|2 ≥ 0 will be
of level µ+ 1. Therefore there must exist a block between A and Z in D[µ+ 1].

Both cases are contradictions.

The previous theorem allows us to make miners reject incoming state that is too
large (more than polylogarithmic) without processing them fully.

We note here that our analysis critically relies on the honest majority assumption
holding throughout the execution. The reason why our verifiers can maintain a valid
chain is that, once they receive a chain C which is the longest, they inductively know
that C[−k] must contain valid application data snapshot. Then, since they have
all the last k blocks, they can validate the transactions δ on the snapshot obtained
before further mining on top of them.

Comparing this result to Theorem 31 of Chapter 3, we observe that here, for
the first time, succinctness is proven against all adversaries, and not just in the
optimistic setting. The whole machinery of Q-blocks and suppression attacks was
required before we could complete such a proof. Using an identical approach, the
succinctness of charity NIPoPoWs (of Chapter 3) can also be proven succinct in all
settings, against 1/3 adversaries.
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4.7 Blinded mining
The protocol presented in the previous section is secure against 1

3 -bounded adver-
saries. We note that the reason why an adversary with more mining power is able
to attack the scheme is because they are able to see which blocks are Q-blocks so
that they can selectively supress them. This motivates us to design a protocol in
which the Q-blockness of a block is not known to the adversary until the block has
been stabilized by being buried under k subsequent blocks and can no longer be
supressed. Therefore, we wish to keep the superblock status secret for a duration
of k blocks.

We modify the honest protocol to work as follows. The pow function works as
usual and accepts as input the usual parameters x (the transaction data) and s
(the reference to the previous block) and finds a ctr such that H(ctr||x||s) ≤ T .
The honest party broadcasts x and s, but keeps ctr private. It then generates a
commitment s′ = Com(H(ctr||x||s)) which commits to the block hash H(ctr||x||s).
Next, it generates a zero knowledge proof π proving the following statement: I know
an ctr such that s′ commits to H(ctr||x||s) and H(ctr||x||s) ≤ T . The commitment
and the zero-knowledge proof are then broadcast by the party.

Mining is performed by setting the first s to be a predefined string (genesis) as
usual. Each next miner then builds on top of s′, the commitment to the previous
block, instead of building on top of the usual H(ctr||x||s). As the new block points
to the commitment, this is sufficient commitment to ensure proof-of-work security.

The value ctr is kept secret by the generating party until the newly generated
block is buried under subsequent 2k blocks according to the view of the party
which originally generated the block. At that point, the party reveals ctr through a
revealing transaction txreveal which includes the ctr value as well as the commitment
opening for s′ showing that the particular ctr value is the one that was committed
to. This transaction is included by an honest miner as long as the chain does not
contain a previous commitment opening for that particular block.

To incentivize this honest behavior, we mandate that the miners are paid only
after opening their commitment. However, if a commitment opening is done prior
to k blocks after the commitment is placed in a block, the rewards are slashed and
the miner is not paid. For more details, see Section 4.10.

4.7.1 The Trapdoor Random Oracle
The above protocol in which the ctr of each block remains secret can be abstracted
by the concept of a trapdoor random oracle in which the party that mines a new
block makes the first query to the random oracle using a secret witness sw which is
associated with a unique public witness pw. The random oracle returns a response
y as usual, but also associates a secret ξ with this response, following a distribution
Ξ which is predetermined. The secret ξ is only recoverable and verifiable using the
secret witness sw. In our protocol, an honest miner reveals sw at a later time in
order to prove to other parties whether their previously mined block is a Q-block.
The Q-blockness of a block is then determined by any predicate applied on ξ. The
adversary can, of course, keep the secret witness sw withheld.

The Trapdoor Random Oracle is illustrated in Figure 4.2 and works as follows.
A query is made to the Random Oracle by invoking the query-p or query-s methods,
passing an x (the query string) as well as a public witness pw (for query-p) or a secret
witness sw (for query-s). The public query returns y, while the private query returns
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Algorithm 34 The Trapdoor Random Oracle functionality ROΞ parameterized by
security parameters κ, λ and a distribution ensemble (Ξ)κ.
1: Tf ← ∅
2: Tp ← ∅
3: function query-f(sw)
4: if ∄pw : (pw, sw) ∈ Tf then
5: pw

$←− {0, 1}λ
6: Tf ← Tf ∪ {(pw, sw)}
7: end if
8: pw ← the pw such that (pw, sw) ∈ Tf

9: return pw
10: end function
11: function query-p(x)
12: if ∄(y, ξ) : (x, y, ξ) ∈ Tp then
13: y

$←− {0, 1}κ
14: ξ ← Ξ
15: Tp ← Tp ∪ {(x, y, ξ)}
16: end if
17: (y, ξ)← the (y, ξ) such that (x, y, ξ) ∈ Tp

18: return y
19: end function
20: function query-s(x, sw)
21: parse x into x′pw
22: if parsing failed then
23: return ⊥
24: end if
25: if query-f(sw) ̸= pw then
26: ▷ Ensure sw is the correct trapdoor
27: return ⊥
28: end if
29: query-p(x)
30: (y, ξ)← the (y, ξ) such that (x, y, ξ) ∈ Tp

31: return ξ
32: end function
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The trapdoor random oracle functionality ROΞ is parameterized by the
security parameters κ, λ and a distribution ensemble (Ξ)κ. Upon initializa-
tion, it sets Tp and Tf to ∅. It supplies the following methods:

• query-f(sw): If (sw, pw) ∈ Tf for some value pw, return pw. Other-
wise choose a pw ← {0, 1}λ and set Tf = Tf ∪{(sw, pw)}, then return
pw.

• query-p(x): If (x, y, ξ) ∈ Tp for some values y, ξ, return y. Otherwise
choose y ← {0, 1}κ and ξ ← Ξκ and set Tp = Tp ∪ {(x, y, ξ)}, then
return y.

• query-s(x, sw): Parse x = x′||pw for some x′, pw. If the parsing
fails, return ⊥. Otherwise, if query-f(pw) ̸= sw, then the trapdoor
is incorrect, so return ⊥. Otherwise, if (x, y, ξ) ∈ Ts for some values
y, ξ, return ξ. Otherwise, choose y ← {0, 1}κ and ξ ← Ξκ and set
Ts = Ts ∪ {(x, y, ξ)}, then return ξ.

Figure 4.2: The trapdoor random oracle functionality ROΞ.

x, sw ξ

x, pw y

Figure 4.3: The ROΞ functionality and the directions of its available queries.

ξ. If the invocation is not new, the method returns the cached value. Otherwise,
the extended Random Oracle functionality generates a y uniformly at random as
usual for the public query. In addition, it generates a value ξ by sampling from the
distribution Ξ for the private query. It also provides a functionality query-f which
allows retrieving pw given sw. The query directions offered by the functionality are
depicted in Figure 4.3.

Next we show how the trapdoor random oracle can be implemented for a distri-
bution ensemble equal to {0, 1}κ. Then we have the following theorem:

Theorem 47. Algorithm 35 implements the functionality ROΞ in Figure 4.3 as-
suming random oracles G,H.

Given the above functionality, block generation can be performed as usual, but
invoking the Trapdoor Random Oracle to perform blinded mining. In this case, the
input to the Trapdoor Random Oracle includes all of the usual data (ctr||x||s) as
well as a secret witness sw which is revealed at a later time.
Remark. In practice, our scheme can be implemented using the following technique
to avoid commitments. Query H(H(ctr)||x||s) ≤ T to check if the query gives a

156



Algorithm 35 The Trapdoor Random Oracle Implementation parameterized by
ROs G(·),H(·) and a distribution ensemble (Ξ)κ = {0, 1}κ.
1: Tf ← ∅
2: Tp ← ∅
3: function query-f(sw)
4: pw ← G(sw)
5: return pw
6: end function
7: function query-p(x)
8: parse x into x′pw
9: y ← H(pw||x′)
10: return y
11: end function
12: function query-s(x, sw)
13: parse x into x′pw
14: if query-f(sw) ̸= pw then
15: return ⊥
16: end if
17: ξ ← H(H(pw||x′)||sw)
18: return ξ
19: end function

valid block. If so, then reveal H(ctr)||x||s. Anyone on the network can check the
block’s validity. Whether the block is a Q-block can be determined by checking
whether, for some µ ∈ N the following inequality holds:

H(ctr||H(H(ctr)||x||s)) ≤ 2−µ

This can only be checked once ctr is revealed (provided ctr contains sufficient
entropy), which corresponds to the Trapdoor Random Oracle secret. The particular
order of evaluation for H ensures that the query for block validity H(H(ctr)||x||s)
has to be submitted by the adversary before they are able to learn the Q-status of
the block through the query H(ctr||H(H(ctr)||x||s)).

4.8 Logspace mining against 1/2
Based on the trapdoor oracle implementation of the previous section, we modify
the mining protocol so that the proof-of-work equation becomes

H(G(ctr)||mtr||interlink) ≤ T

where G is a pre-image resistant hash function. The difference with the plain
protocol is that the nonce ctr is hashed prior to being put into the proof-of-work
equation. The property of a block being a µ-superblock is then defined by the
equation

H(H(G(ctr)||mtr||interlink)||ctr) ≤ 2κ

2µ
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Note that, in order to determine the Q-block status of a block, the inner evaluation
of H must have already been completed.

Mining then works as follows. The honest miners try to solve the new proof-of-
work equation. If they succeed, they broadcast their solution as usual. They get
paid their rewards into a coinbase transaction. However, that coinbase transaction
remains locked for now. The nodes receiving a blockchain check that the new proof-
of-work equation has been solved correctly. After k blocks (where k is the Common
Prefix parameter) have elapsed and the adopted blockchain is C, the miner who
solved the proof-of-work of block C[−k] discloses the value of ctr with a reference to
the respective block. This information is broadcast and included in a transaction
which is confirmed in blocks following C. This condition “unfreezes” the coinbase
payout of the miner.

4.8.1 Security
We show how to strengthen the Common-Prefix Lemma (Lemma 43), taking ad-
vantage of the fact that the adversary decides to suppress a block without knowing
if it satisfies the block property or not.

Lemma 48 (Q-block Common-Prefix Lemma). Assume t < ( 12 − δ)n with δ >
3ε+3f and a Q-typical execution. Consider a round at which a chain C is adopted
by an honest party and suppose there exist another chain C′ such that C′ \ (C′ ∩ C)
has at least 12λξQf/ε Q-blocks. Then, with high probability, C has more Q-blocks
than C′.

Proof. Define r∗, S,W,W ′ as in the proof of Lemma 43. As in that proof, the
number of Q-blocks on C′ \ C∗ is at most

(1 + ε)ξQp|W ′|+ 3λξQf.

To upper bound the number of Q-blocks the adversary can suppress we are going
to apply Lemma 44. Consider every block computed in S that was suppressed by
the adversary. Each such block has an associated adversarial block (see Lemma 41
and the paragraph following its proof). Let J contain each honest query j in S
that attempted to create a suppressed block. Let Fj = 1 for each j ∈ J , unless the
suppressed block was already more than k blocks deep at the time its associated
block was created. Let Mj = 1 if the suppressed block was a valid Q-block. By
Lemma 44, the adversary suppressed at most (1 + ε)ξQp|W |. Thus the number of
Q-blocks on C \ C∗ is at least

YQ(S)− (1 + ε)ξQp|W |.

Subtracting from this the upper bound above we obtain

YQ(S)− (1 + ε)ξQpqt|S| − 3λξQf

> YQ(S)−
(1 + ε)(1− δ)

1− f
ξQf |S| − 3λξQf

> YQ(S)−
(1 + ε)(1− δ)

1− f
ξQf |S| − εξQf |S|

> YQ(S)− ZQ(S) > 0.
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The first and the last inequality use Lemma 39. For the middle inequality, observe
that if in a typical execution |S| ≤ 3λ/ε, then less than 12λξQf/ε Q-blocks have
been computed in total.

4.9 Computational Ledgers
We note here that a full analysis of the logspace mining protocol would require a
redefinition of the concepts of persistence and liveness to account for the fact that
the blockchain application state at which the network converges is a valid historical
possibility. We sketch these definitions for reference here.

The blockchain protocol is parametrized by a blockchain application tuple (L,S, S0, δ)
which consists of the following:

1. L: A (potentially infinite) transaction language containing all valid transac-
tions.

2. S: A (potentially infinite) set of valid states that the system can be in.

3. S0 ∈ S: A genesis state that the system begins with.

4. δ : S × L −→ S ∪ {⊥}: An efficiently computable transition function that
takes a transaction tx, a previous state S ∈ S and returns a next state S′ ∈ S,
or ⊥ if the transaction tx cannot be applied on top of state S.

The transition function δ can be extended to apply multiple transactions in a
transition function δ∗ : S×L∗ −→ S∪{⊥} which is defined recursively: δ∗(S, ϵ) = S

and δ∗(S, tx tx)) =

{
⊥, if S = ⊥
δ∗(S, tx), otherwise

.

Each block B in a blockchain contains application data which consists of the
previous state B.S ∈ S and a sequence of transactions B.tx with ∀tx ∈ B.tx ∈ L
that this block confirms. It must hold that the transitions described by a block are
valid i.e., that δ∗(B.S,B.tx) ̸= ⊥ and that each next block’s previous state is the
previous block’s next state, i.e., ∀i > 0 : δ∗(C[i − 1].S,C[i − 1].tx) = C[i].S. The
genesis block G contains a commitment to the genesis state G.S = S0.

Whenever a full node receives a blockchain C they check its validity by ensuring
that the above properties hold. Then, the reported stable ledger state Lp[r] for each
honest party p at round r is the state S that is committed to the tip of the stable
portion of the blockchain.

To define computational persistence, we set up the game illustrated in Algo-
rithm 36. Let r1 ≤ r2 ∈ N be rounds and p1, p2 be honest parties. Consider the
ledger states Lp1 [r1] and Lp2 [r2] adopted by p1 and p2 at rounds r1 ≤ r2. In this
game, an adversary (A1,A2) participates in an execution in which he attempts to
cause p1 and p2 to arrive at ledger states Lp1

, Lp2
at rounds r1, r2 such that the

ledger of p2 could not have possibly been the extension of the ledger of p1. We
capture the success of the adversary through a simulator who remains unable to
produce a transaction sequence tx which conciliates ledgers Lp1 [r1] and Lp2 [r2], i.e.,
δ∗(Lp1 [r1], tx) = Lp2 [r2]. We remark here that the mere existence of tx is insuf-
ficient; it must be efficiently computable by a simulator. An example in which a
transaction sequence exists but is not efficiently computable is the case where the
adversary causes the honest parties to transition from a state S1 in which an honest
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Algorithm 36 The challenger for the ledger persistence game.
1: function persistence-gameA1,A2,Z,A∗,Π(κ)
2: v ← viewt,n

Π,A1,Z
3: r1, r2, p1, p2 ← A2(v)
4: if r2 < r1 ∨ (p1, p2 are not honest parties in v) then
5: return false
6: end if
7: tx← S(v, r1, r2, p1, p2)
8: Lp1

, Lp2
← ledgers of p1, p2 in v

9: if r1 < r2 then
10: return (δ∗(Lp1 [r1], tx) ̸= Lp2 [r2])
11: else
12: return (δ∗(Lp1

[r1], tx) ̸= Lp2
[r2]) ∧ (δ∗(Lp2

[r2], tx) ̸= Lp1
[r1])

13: end if
14: end function

Algorithm 37 The challenger for the ledger liveness game.
1: function liveness-gameA1,A2,Z,A∗,Π,u(κ)
2: v ← viewt,n

Π,A1,Z
3: r, p← A2(v)
4: tx← transactions issued continuously in v for u rounds prior to r
5: if p are is not honest in v then
6: return false
7: end if
8: tx

′ ← A∗(v, r, p)
9: Lp ← ledger of p in v

10: return (tx ̸⊆ tx
′ ∨ δ∗(S0, tx

′
) ̸= Lp[r])

11: end function

party holds certain coins secured by a public signature scheme, to a state S2 in
which the coins have been transferred to the adversary’s control. In this case, the
simulator will remain unable to produce the signature needed to relinquish control
of the honest party’s coins, and the adversary will be deemed successful.

Definition 62 (Computational persistence). A protocol Π has computational per-
sistence if there is a negligible function negl such that for all probabilistic polynomial-
time adversaries (A1,A2) and all environments Z there exists a probabilistic polynomial-
time simulator A∗ such that

Pr[persistence-gameA1,A2,Z,A∗,Π(κ)] ≤ negl .

For the case of computational liveness, we introduce the similar game illustrated
in Algorithm 37. In this game, parameterized by the liveness parameter u, the
environment issues a sequence of transactions tx each of which is given as input to
all honest parties continuously for u rounds prior to some round r. The adversary
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attempts to cause an honest party p to arrive at a ledger state Lp[r] at round r on
which one or more of the transactions in tx have not been taken into account. Again,
we express the adversary’s success with the inability of a probabilistic polynomial-
time simulator to produce a transaction sequence tx′ with tx

′ ⊆ tx which transitions
the genesis state S0 to the adopted ledger state Lp[r] of party p.

Definition 63 (Computational liveness). A protocol Π has computational liveness
if there is a negligible function negl such that for all probabilistic polynomial-time
adversaries (A1,A2) and all environments Z there exists a probabilistic polynomial-
time simulator A∗ such that

Pr[liveness-gameA1,A2,Z,A∗,Π(κ)] ≤ negl .

4.10 Deploying with a Soft Fork
It should be clear that the protocols proposed in the previous sections can be de-
ployed in new blockchains from Genesis and can also be deployed in existing block-
chains using a hard fork. It is interesting to consider whether it is also possible to
deploy these protocols using a soft fork. We explore this question for the concrete
case of Ethereum; other cryptocurrencies can be soft forked in a similar manner.

The protocol of Section 4.4 against 1/3 adversaries can easily be deployed using
a soft fork. In order to do that, the interlink set described in Chapter 3 needs to
be included in every block. To achieve backwards compatibility, it can be placed
into an interlink Merkle tree whose root is placed in the extraData field. Whenever
a proof is constructed, the prover must prove to the verifier that the proof forms
a chain. Hence, along with each block in the proof, the respective pointer to the
previous block in the proof must be presented. Therefore the prover accompanies
each block with a Merkle Tree proof-of-inclusion which proves that the pointer is
included within the interlink Merkle tree.

The protocol of Section 4.8 is more challenging to deploy. Again, we include
the witness-augmented interlink vector into a Merkle tree whose root is stored in
the extraData field. Recall that the current block header format of Ethereum is
H(ctr||x||previd), where ctr denotes the mining nonce, x indicates the application
data, and previd denotes the hash of the parent block. We require upgraded miners
to mine by searching for a ctr′ such that H(B) ≤ T , where B = H(ctr′)||x||previd.
The blinded block value is then defined as ξ = H(ctr′||H(H(ctr′)||x||previd)) and
the block level is defined as the maximum µ such that ξ ≤ T

2µ . In this scheme,
the value H(ctr′) looks like the value ctr to unupgraded miners. Note that at this
point, it is indistinguishable for the parties that did not mine the block in question
whether it was mined using the old (ctr) or the new protocol (H(ctr′)) prior to
the value ctr′ being disclosed, as, in the old protocol, ctr is chosen uniformly at
random, while in the new protocol, the value H(ctr′) is determined by a Random
Oracle. Consider a block B mined by an honest miner p. The value ctr′ is revealed
after the block B is burried under 2k + 2ℓ blocks in the view of p. The revelation
of ctr′ takes place by having p create a transaction txReveal which contains ctr′ as
well as the index of B in p’s chain. As B is stable, this position will be the same
for all other honest parties as well.

While the above scheme works in our cryptographic treatment, it is worth con-
sidering the incentives of such a scheme. In particular, observe that, without further
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modification, miners are not incentivized to mine using the new protocol and can
continue mining with the unupgraded protocol, while never revealing any preimage
ctr′. Hence, we want to incentivize miners to reveal the value ctr′. For this purpose,
we can design the protocol so that the mining rewards are only paid out conditioned
on the fact that ctr′ is properly revealed.

This can be done with a soft fork as follows: The block beneficiary field is
modified to pay out to a smart contract instead of a regular beneficiary address.
The smart contract for this purpose is illustrated in Algorithm 38. It is deployed
once into a known address and upgraded miners require that the beneficiary of every
block is the particular smart contract.

The smart contract is parameterized by two constant hard-coded parameters k
and ℓ, the common prefix and liveness parameters respectively. The parameter k
ensures that a block buried under k blocks is considered stable and the parameter ℓ
ensures that after ℓ blocks are broadcast during which an honest transaction appears
in the mempool, it will have the chance to be included in the blockchain.

The smart contract is used by an honest miner as follows. The miner places
one special transaction txClaim at the beginning of his newly mined block. That
transaction calls the ClaimBlock function of the smart contract and claims the
block to the miner’s address before anyone else is able to do so. As the beneficiary
address is taken up by the smart contract’s address, this allows the miner to claim
the block with his public key. The miner then waits for 2k + 2ℓ blocks to pass
and subsequently calls the OnTimeReveal function in the txReveal transaction (and
note that if anyone else happens to call this function, the rightful miner is still paid
out). He passes the block number to be claimed, idx, as well as the nonce preimage
ctr′ that was used when he mined the block in question and the surrounding data
in the block header α and β. The smart contract verifies that the nonce H(ctr′)
was indeed used by comparing against the block hash, marks the block reward as
paid, and pays the miner. Due to liveness guarantees, the transaction in which the
miner calls OnTimeReveal will be included from 3k+2ℓ blocks until 3k+3ℓ blocks
after the block in question was mined and hence will fall within the desiredPeriod
mandated by the smart contract. In case the miner reveals late, the reward is lost.

It is undesirable that the miner reveals ctr’ to another party before k blocks
have passed. In case that happens, the party which has received the revelation
can slash the miner’s rewards. This is performed as follows. The party who has
early knowledge of ctr’ calls the function EarlyCommit within k blocks of the block
in question, committing to a claim that they will perform an early reveal of the
preimage. The commitment includes the address of the claimant as well as the
secret preimage, so that contesting claimants cannot copy the claim and enter into
a transaction race. This transaction will be included after at most ℓ blocks have
passed. After it is included, the claimant waits for k blocks for confirmation to
ensure no chain reorg will cause his commitment to be reversed. Hence, 2k + ℓ
blocks after the mined block in question, the claimant calls the function EarlyReveal
in which an early revelation of the preimage is verified by the smart contract by
ensuring the claim matches the given commitment. In that case, the claimant is
paid a small percentage of the block rewards (in our example we use 10%), while
the rest of the rewards are slashed and cannot be later claimed by the miner. Note
that the full amount cannot be paid to the claimant, as we wish to discourage the
miner from being the claimant himself. The transaction making the claim will take
at most ℓ blocks to be included, and hence the total period for early claiming has
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Algorithm 38 The BlindedMining smart contract used as a beneficiary in mining
for soft fork deployment on Ethereum
1: contract BlindedMiningk,ℓ
2: uint earlyPeriod← 2k + 2ℓ
3: uint desiredPeriod← earlyPeriod+ k + ℓ
4: float slashingFraction← 0.1
5: mapping(uint→ addr) blockClaimed
6: mapping(uint→ bool) blockRevealed
7: mapping(uint→ mapping(addr→ string)) commitments
8: mapping(uint→ uint) blockValue
9: payable function ⊕()
10: blockValue[block.number]← msg.value
11: end function
12: function ClaimBlock
13: require(blockClaimed[block.number] = address(0))
14: blockClaimed[block.number]← msg.sender
15: blockNonce[block.number]← ctr
16: end function
17: function IsEarly(idx)
18: return block.number < idx+ earlyPeriod
19: end function
20: function IsLate(idx)
21: return block.number > idx+ desiredPeriod
22: end function
23: function IsOnTime(idx)
24: return ¬IsEarly(idx) ∧ ¬IsLate(idx)
25: end function
26: function EarlyCommit(idx, commitment)
27: commitments[idx][msg.sender]← commitment
28: end function
29: function EarlyReveal(idx, ctr’, α, β)
30: require(BlockHash(idx) = H(α||H(ctr’)||β) ∧ IsEarly(idx))
31: require(commitments[idx][msg.sender] = H(ctr’||salt||msg.sender))
32: v ← slashingFraction ∗ blockValue[idx]
33: blockRevealed[idx]← true
34: msg.sender.transfer(v)
35: end function
36: function OnTimeReveal(idx, ctr’, α, β)
37: require(BlockHash(idx) = H(α||H(ctr’)||β))
38: require(IsOnTime(idx) ∧ ¬blockRevealed[idx])
39: blockRevealed[idx]← true
40: blockClaimed[idx].transfer(blockValue[idx])
41: end function
42: end contract
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a duration of 2k+ 2ℓ blocks. The reason we allow on-time revealing only after this
period has passed is to allow for claimants that have learned the preimage during
the first k blocks after the mined block to have a fair chance of committing and
revealing it during the early period. The honest miner will make the claim only
after 3k + 2ℓ blocks have passed, so as to avoid the potential for chain reorgs to
allow for subsequent early revelation (once the blockchain has 3k + 2ℓ blocks, no
new blockchain can be adopted which has different transactions prior to the 2k+2ℓ
point).

In summary, this scheme disincentivizes miners to reveal prior to seeing that k
blocks have buried their newly mined block (in which case they are guaranteed to be
slashed) and incentivizes them to reveal after 3k+ 2ℓ blocks have passed (in which
case they are guaranteed not to be slashed), but before 3k + 3ℓ blocks have passed
(so that they still receive their reward). This is sufficient for the construction of
our blinded mining scheme.

We note here that smart contracts like the one described can be used as soft
forks for any desirable reward distribution change in Ethereum.

4.11 Discussion
We have presented a scheme in which full miners are replaced with logarithmic-space
miners. Our new mining protocol allows miners to only keep storage growing log-
arithmically in time. Furthermore, the data communicated to newly bootstrapped
nodes is also logarithmic. We focused on optimizing the consensus data portion of
blockchains (i.e., block headers) without concern for the application data portion.
Our techniques can be composed with application data optimization techniques.

We have proven our scheme succinct and secure against all 1/3 adversaries.
Our treatment requires uninterrupted honest computational majority throughout
the execution, is in the static difficulty model, and works only for proof-of-work
blockchains. Let us discuss these aspects of our construction.

Using our new mathematical framework, the charity construction of Chapter 3
(with certificates of badness removed) can also be proven secure against 1/3 adver-
saries. However, now that we have the tooling of unsupressibility available to us,
and we can prove the distill construction secure and succinct, we have the additional
benefit of the simplicity of comparison at a uniform level. However, as we will see
in Chapter 5, this distill construction will not work in the variable difficulty setting,
and we will have to resort back to the charity construction explored previously.
Temporary dishonest majority. One important difference between our scheme
and the existing blockchain protocols is that traditional full nodes are able to verify
the whole state evolution of the system from genesis. This allows them to recover in
case of temporary dishonest majority [7, 14], while our system cannot do so. Let us
consider what could happen in case an adversary temporarily has the upper hand in
a blockchain where everybody is mining using our protocol. Let C denote the chain
of the honest parties that has converged. The adversary begins mining on top of the
honest tip. She eventually produces k + 1 new blocks on top of C[−1], generating
an adversarial chain C∗, prior to the honest parties advancing by k + 1 blocks — a
Common Prefix violation. In the block C∗[−k − 1], the adversary places an invalid
snapshot; say, a snapshot in which she owns a lot of money. The rest of the blocks
in C∗[−k:] are filled with valid transactions. This adversary can then compress this
consensus state into a convincing proof, as state transitions buried k + 1 blocks
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beyond the tip are never checked. As soon as the honest parties transition to
this adversarial chain, the attack concludes, and no more adversarial supremacy
is required. It is critical to understand what assumptions our protocol mandates:
An uninterrupted honest majority throughout the execution. It remains an open
question whether it is possible to construct logarithmic space mining protocols that
can withstand temporary adversarial supremacy.
Variable difficulty. We have built and analyzed our logarithmic mining protocol
in the constant difficulty setting, i.e., requiring that the target T is a constant. We
strongly suspect, but have not provided proof, that similar protocols to ours work in
the variable difficulty setting. One important change in the protocol that is required
before it can be adapted to variable difficulty settings is that the χ portion of the
proofs cannot be a constant number of blocks long. Instead, it must be a suffix
which corresponds to sufficient work having been performed, the difficulty of which
must correspond to the current target. Simply pruning k blocks long is insufficient.
As such, the verifier must first gauge the difficulty of the network prior to taking
conclusive decisions. We explore variable difficulty constructions in Chapter 5.
Comparison to other NIPoPoWs. The protocol explored in this chapter is a
Non-Interactive Proof of Proof-of-Work, akin to the charity NIPoPoWs of the pre-
vious chapters, and FlyClient [32]. Our difference with FlyClient is the ability to
generate online proofs, proofs that can be updated as the blockchain grows. Con-
trary to our construction, FlyClient requires the sampling of past blocks to change
as new blocks are added to the tip of the blockchain. This is due to their use of
the Fiat–Shamir heuristic [55]. More concretely, a block that was not sampled in
the past may need to be sampled in the future. In our protocol, previously pruned
blocks never need to be salvaged. As any block has a potential for future sampla-
bility in FlyClient, no blocks can be discarded, and mining cannot be logarithmic.
We are thus the first to propose a NIPoPoW which is online, succinct, and secure
against all minority (1/3) adversaries. All of these are necessary prerequisites to
achieve the desired goal of logarithmic-space mining.
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Chapter 5

Variable Difficulty and
Bounded Delay

We now adapt the construction of the previous sections to the variable difficulty
model. The chain compression construction and verifier are identical to that the
previous section, but with a modified upchain operator as follows. Let C be a chain
and µ ∈ N. Define the upchain C↑µ of C to be the subchain {B ∈ C : H(B) ≤
4−µT0} where T0 is the minimum-difficulty target.

We conjecture that the above construction is secure and succinct in the variable
difficulty model as defined in [61]. We sketch below the arguments to support this
conjecture, assuming that our Unsupressibility Lemma and the Q-block Common-
Prefix Lemma transfer to the variable difficulty model.

Definition 64 (Superqueries). A random oracle query is called µ-successful if its
output does not fall above 2µ−κT0.

Let

Xr↑µ=

{
1, if an honest party queried H with a µ-successful query during r

0, otherwise
.

Yr↑µ=


1 , if an honest party queried H with a µ-successful query during r

and r was a uniquely successful and isolated round
0 , otherwise

.

Zrk↑µ=

{
1, if the kth adversarial query during round r was µ-successful
0, otherwise

.

Let Zr =
∑t

k=1 Zrk.
Let S be a set of consecutive rounds. Then let XS↑µ=

∑
r∈S Xr↑µ, Y S↑µ=∑

r∈S Yr↑µ and ZS↑µ=
∑

r∈S Zr↑µ.
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Definition 65 (Ground level). Let r be a round. The ground level of r is defined
as µ∗r = ⌈lg( nr

ηn0
)⌉. Let S be a set of rounds. Then the ground level of S is defined

as µ∗S = maxr∈S µ∗r.

Definition 66 (Variable Superblock Typicality). An execution E is superblock-
typical if for all µ ∈ N and for all sets S of consecutive rounds such that |S| ≥ λ2µ,
the following hold:

• |XS↑µ | < (1 + ϵ)pn(S)2−µ|S|.

• If µ ≥ µ∗S, then |Y S↑µ | ≥ (1− ϵ)(1− θf)∆+1pn(S)2−µ|S|.

• |ZS↑µ | < (1 + ϵ)pt(S)2−µ|S|.

Theorem 49 (Variable Superblock Typicality). Consider an ITM system (Z, C)
which runs in L steps. The probability of the event “E is not superblock-typical” is
bounded by e−Ω(κ)+lgL.

Sketch.

Lemma 50 (Pairing). Let r be a ∆-isolated uniquely successful round and B be
the block generated by the honest parties during r extending chain C. Consider
any other chain C′ and a block B′ such that diff (C) ≤ diff (C′) < diff (CB) or
diff (C) < diff (C′B′) ≤ diff (CB). Then B′ was computed by the adversary.

Proof. Observe that diff (C′) < diff (CB) and diff (C′B′) > diff (C). We will show that
B′ could not have been honestly generated during any round r. We distinguish the
cases u − ∆ ≤ r < u + ∆, r ≥ u + ∆, and r < u − ∆. Since u is a ∆-isolated
uniquely successful round, block B′ could not have been generated by an honest
party during any round r with u−∆ ≤ r < u+∆. During any round r ≥ u+∆, all
honest parties have received CB and so would extend only chains with difficulty at
least diff (CB), and so they would not extend C′ since diff (C′) < diff (CB). During
any round r < u−∆, if an honest party had generated B′, then it would have been
received by all other honest parties by round u. Since diff (C′B′) > diff (C), this
contradicts that the honest party extended C during u.

Definition 67 (∆-expansion). Let S be a set of rounds. We define the ∆-expansion
of S to be the set S±∆ = {r′ ∈ N : ∃r ∈ S : |r − r′| ≤ ∆}.

Lemma 51 (Cost of Suppression). Consider a ∆-isolated uniquely successful round
r during which block B was produced by an honest party. If at a later round r′ > r+∆
some honest party has a chain that does not contain B, then there exists a set S
of consecutive rounds such that r ∈ S and A(J) ≥ Q(S), where J is the set of
adversarial queries made during S±∆.

Proof. Let C denote the chain that B extends. Let r′ > r + ∆ be the first round
during which an honest party has a chain C′ which does not contain B. It will hold
that diff (C′) ≥ diff (CB). Let b = (C ∩ C′)[−1] and let b∗ be the most recent block
preceding b which was honestly generated during a ∆-isolated uniquely successful
round. Let r∗ denote the round during which b∗ was generated and C∗ be the
chain that b∗ extends. Let S = {r∗ + ∆, · · · , r′ − ∆}. Then S contains r. Let T
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be the set of ∆-isolated uniquely successful rounds in S. For any r1, r2 ∈ T with
r1 < r2 producing b1 and b2 and extending C1 and C2 respectively, it will hold
that diff (C1b1) ≤ diff (C2) and the difficulties do not overlap. Let J be the set of
adversarial queries made during S±∆. We claim that A(J) ≥ Q(S). Consider any
r′′ in T during which block b′′ was honestly generated and let b′′ extend chain C′′.
Since r∗ was a successful round and r′′ > r∗+∆, therefore diff (C′′) ≥ diff (C∗b∗). We
will use Lemma 50 to pair the difficulty of block b′′ against adversarially generated
difficulty. We distinguish two cases. Case b′′ ̸∈ C′ : As r′′ + ∆ ≤ r′, therefore
diff (C′′b′′) ≤ diff (C′) and b′′ can be paired against adversarial difficulty in C′. Case
b′′ ∈ C′ : Since r is ∆-isolated uniquely successful, we must have r′′ ≤ r − ∆ or
r′′ ≥ r+∆. If r′′ ≤ r−∆ then diff (C′′b′′) ≤ diff (CB), otherwise B would not have
been honestly generated. If, on the other hand, r′′ ≥ r+∆, then by the minimality
of r′, again we obtain diff (C′′b′′) ≤ diff (CB). Therefore we can pair b′′ against
adversarial difficulty in C. To see this, observe that, if b′′ ∈ C′ \ C, then it does not
belong to C and we are done; but if b′′ ̸∈ C′ \ C, then b′′ cannot be in C{b∗:b} by
the definition of b∗.

We conclude that

A(J) =
∑
r∈J

A(r) ≥
∑
r∈T

Q(r) =
∑
r∈S

Q(r) = Q(S) .

Lemma 52 (Unsuppressibility). In an (ϵ, η, θ)-typical execution, every set of con-
secutive rounds U has a subset S of ∆-isolated uniquely successful rounds such
that:

• |S| ≥ Q(U)− 3A(U)− 2ℓ(1 + ϵ)τα(J)/ϵ

• at any round after S±∆, every honest party has a chain which contains all the
blocks corresponding to S.

where J is the set of adversarial queries in U±∆.

Sketch. Let U ′ = {minU − ℓ, · · · ,maxU + ℓ}. Let S contain all those r ∈ U such
that for any S′ ⊆ U ′ it holds that Q(S′) > A(J ′) where J ′ denotes the set of
adversarial queries in S′±∆. From typicality it follows that any S′ with elements
outside of U ′ cannot have Q(S′) > A(J ′), as |S′| ≥ λ. Consider the minimum
collection T of sets of consecutive rounds with the following properties:

• For all T ∈ T : Q(T ) ≤ A(T±∆).

• U \ S ⊆
⋃
T .

Now, observe that due to the minimality of T , no round r in U \ S is covered
by more than 2 different spans T1, T2 ∈ T . For, if it were covered by different spans
T1, T2, T3 ∈ T , then we could keep only these two spans among them that are the
left-most and right-most.

Call a round r ∈ U \ S:

• a sentinel if it is covered only by one span in T ;

• a non-sentinel otherwise.
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Let T±∆ = {T±∆ : T ∈ T } and let us examine how many T±∆ ∈ T±∆ can cover
a particular round r. Consider an arbitrary round r ∈ U \ S.

If r is a non-sentinel, then it is covered by two spans T1, T2 ∈ T . Consider
the largest round r′ < r with r′ ∈ U \ S, and note that such a round must exist.
Necessarily, r′ will be covered be either T1 or T2, or both, but by no other span
(to see this, observe that if, say, r′ was covered by T2 and not T1 but also by some
other span T3, then T2 would be needless and this would contradict the minimality
of T ). As r − r′ ≥ ∆, any span T ′ which covers rounds prior to r′ cannot extend
to the right to cover r; that is, maxT ′±∆ < r. A symmetric argument can be made
for any spans on the right side of r. Therefore, non-sentinel rounds can only be
covered by up to two spans in T±∆.

If r is a sentinel, then up to two spans (one from the left and one from the right)
can be ∆-extended to cover it, so it can be covered by up to three spans in T±∆.

Let q = Q(U) and a = A(U). We need to show that q − |S| ≤ 3a + 2ℓ(1 +
ϵ)τα(J)/ϵ.

q − |S| = Q(U \ S) ≤
∑
T∈T

Q(T ) ≤
∑
T∈T

A(T±∆)

≤ 3a+A(U ′ \ U) ≤ 3a+ 2ℓ(1 + ϵ)τα(J)/ϵ

Remark 8 (Bounds in the q-bounded setting). We note that the |S| ≳ Q(U) −
3A(U) bound above requires a 1

4 -bounded adversary. This bound is due to the
∆-bounded delay setting. However, the same proof can show that |S| ≳ Q(U) −
2A(U) in the case of the variable difficulty model in the q-bounded synchronous
setting. Therefore, a 1

3 -bounded adversary can be tolerated. The same bounds in the
synchronous setting apply in all of the next theorems, establishing security against
a 1

3 adversary in the variable difficulty q-bounded synchronous setting and against
a 1

4 adversary in the variable difficulty ∆-bounded delay setting.

Theorem 53 (Variable Super Common Prefix). Consider an (ϵ, η, θ)-typical exe-
cution in a (γ, s)-respecting environment and suppose that for all r it holds that
tr < ( 14 − δ)nr with δ

2 > 2ϵ + θf . Consider a chain C adopted by an honest party
on round r and let C′ be any other chain at round r. Let b = (C∩C′)[−1] and b∗ be
the most recent honest block in C ∩ C′ produced at round rb∗ . Let S = {rb∗ , · · · , r}
and µ ≥ µ∗S. If |C ′{b:}↑µ | ≥ 22λf2−µ, then |C{b:}↑µ | > |C ′{b:}↑µ |.

Sketch. Let r∗ be the round in which the most recent honestly generated block in
(C ∩ C′)[−1]. Let S = {r∗, · · · , r}. Let W ′ denote the set of adversarial queries on
C′ \ C at round r′ ≥ r + ℓ and W the set of adversarial queries in S \W ′.

We first observe that no query in W ′ could have suppressed a µ-superblock on
C \ C′. As in the proof of Lemma 51, in such a case there would exist a set of
consecutive rounds |S∗| ≥ ℓ such that Q(S∗) ≤ A(J) where J is the number of
adversarial queries in S∗±∆. This contradicts typicality.

Lemma 54 (Variable Multilevel Common Prefix). Consider an (ϵ, η, θ)-typical ex-
ecution with τ ≤ 2. Let C be an honestly adopted chain at round r and let C′ be any
other chain. Consider any µ′ ≥ µ∗r such that |(C′ \ C)↑µ′ | > m

2 . Then there exists
some µ > µ′ such that |(C \ C′)↑µ | > m

2 and 2µ|(C \ C′)↑µ | > 2µ
′ |(C′ \ C)↑µ′ |.
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Definition 68 (Admissible Chain). Consider a chain π during a round r and let
k′ be the minimum parameter such that diff(π[−k′ :]) ≥ k nr

ηn0
. Let b = π[: −k′][−1]

and consider the round rb during which b was produced. We say that π is admissible
at round r if:

• b belongs to the chain of an honest party during r (persistence)

• rb ≥ r − k
ηf (liveness)

Lemma 55 (Honest Chopping). Consider a NIPoPoW π produced by an honest
party during round r. Then π is admissible at r.

Sketch. Let k′ be the minimum parameter such that diff(π[−k′ :]) ≥ k nr

ηn0
. Clearly

b = π[−k′ :][−1] belongs to the chain of the honest party that produced π. It
suffices to show that rb ≥ r − k

ηf . The condition holds because m > k ≥ k′.

Theorem 56 (Variable NIPoPoW Admissibility). Consider an (ϵ, η, θ)-typical exe-
cution in a (γ, s)-respecting environment such that for all r we have tr < ( 14 − δ)nr.
Let π and π′ be NIPoPoWs generated by an honest prover B and adversarial prover
A respectively during round r. Let π∗ be the NIPoPoW selected by the honest verifier
among π and π′. Suppose n⃗ is increasing during [r] and that V ([r]) is appropriately
upper bound. Then π∗ is admissible at r.

Sketch. If π is chosen, then both admissibility conditions hold by Lemma 55. There-
fore, we will show that, if π′ is chosen, then it is admissible. Let M = {µ : π↑µ
∩π′↑µ ̸= ∅}. Case 1: M = ∅. Consider r∗ = 0 and let S = {0, · · · , r}. If M = ∅
then... chopping off will get us to genesis, which is honest and recent. Case 2:
M ̸= ∅. Let µ = minM. Let b = (π↑µ ∩π′↑µ)[−1] and let b∗ be the most recent
honest block preceding b. Let r∗ be the round during which b∗ was generated and
set S = {r∗, · · · , r}. Let µ∗ = ⌈lg nrπ

n0
⌉. Case 2a: µ > µ∗. By the minimality of

µ, it will hold that |π{b:}↑µ | ≥ m (otherwise b ∈ D[µ − 1] ∩D′[µ − 1] ̸= ∅). Fur-
thermore, C{b:}↑µ= π{b:}↑µ. Apply Theorem 53 to obtain |π{b:↑µ}| > |π′{b:}↑µ |.
Therefore, in this case, π will be chosen. Case 2b: µ ≤ µ∗. If the adversarial
proof is chosen, then chopping off will get us to an honest fresh block because, from
typicality, diff (π′{b :}) < A({rb∗ , · · · , r}) must also be small.

Remark 9 (Dropping difficulty). The above theorem establishes that a NIPoPoW
verifier picks an admissible proof in cases of non-decreasing difficulty. If difficulty is
allowed to decrease, then we can still establish a persistence guarantee in sacrifice of
liveness. Let b = (π↑µ ∩π′↑µ)[−1] where µ = minM as in the construction and let
r∗ be the round during which the most recent honestly generated block preceding b was
generated. If M = ∅ then set r∗ = 0. Let S = {r∗, · · · , r} and µ∗ = maxr′∈S µ∗r′ .
First, observe that it is sufficient to only require difficulty to be non-decreasing
during S, but can be allowed to decrease before S, and this ensures both liveness
and persistence for the NIPoPoW verifier. In case difficulty has decreased during
S, then chopping off the minimum-length suffix with at least 2µ

∗
k difficulty from the

selected proof π∗ ensures that the remaining chain has a tip adopted by all honest
parties (establishing persistence), but may be stale (sacrificing liveness), as it could
have been generated prior to round r − k

ηf .

Discovering the current difficulty. The last missing piece in creating a full
variable-difficulty verifier is to instruct the verifier to chop off the correct amount
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of difficulty from an admissible chain so that they obtain a stable and fresh block,
achieving persistence and liveness comparable to an honest full node. If they chop
off too little, they will arrive at a blockchain with non-stable tip, sacrificing persis-
tence. On the other hand, if they chop off too much, they will sacrifice liveness, as
their tip will be too old. Our goal is to ensure the NIPoPoW verifier has comparable
persistence and liveness to a full node. To chop off the correct amount, the verifier
needs to estimate the value of the ground level µ∗. The ground level can be esti-
mated if the verifier can estimate the current mining population. The verifier first
finds an estimate ñ for the population, and then sets µ∗ = ⌈lg n0

ηñ⌉. The question is
then how to estimate the population.

If we had a randomness beacon emitting every m
f rounds, a NIPoPoW verifier

waking up from genesis and with only logarithmic state and communication avail-
able could estimate the population after 2m

f rounds, since at least two beacon pulses
will be emitted during them. The verifier works as follows in this case. When the
beacon emits the first pulse, it begins collecting any block it sees on the network,
regardless of which chain it belongs to —or indeed whether it belongs to a chain
at all— until the second beacon pulse is detected. These blocks are collected into
a set S. The verifier then evalutes diff (S) as an estimate of the current difficulty
and estimates the current population as ñ = diff (S)f2κ

n0mT0
. This certainly constitutes a

lower bound for the amount of difficulty queried during the epoch, but may include
stale blocks that were queried by the adversary and rebroadcast to confuse the NI-
PoPoW verifier. To avoid this, since we have a beacon available, we require every
honest party to include the beacon randomness in every block they generate. That
way, the verifier only counts those blocks which include a reference to the same
randomness that it sees.

Based on the above protocol, we can now tackle the lingering question of how
to avoid the strong assumption that such a beacon entails. Note that the need for
the beacon stems from the requirement that the adversary should not be able to
predict its value and therefore is required to produce fresh blocks to convince the
honest NIPoPoW verifier about the difficulty currently being queried. The same
unpredictability can be obtained if the NIPoPoW verifier provides this value. In
fact, we can implement this without any changes to the standard protocol. When
the NIPoPoW verifier wakes up during round r, it produces a fresh random nonce
R. It then creates a transaction tx containing R. We call this transaction a difficulty
weather balloon because it will be diffused to the network to allow the verifier to
make difficulty measurements. Once the balloon has been diffused, from the liveness
property of the ledger maintained by the full nodes, it will be included in a block
which will become stable within u rounds where u = m

16τuf + γk
ηf(1−ϵ)(1−θf) denotes

the liveness parameter.
The verifier counts all blocks that appear on the network from round r + u to

round r + u+ m
f . A block is collected into the set S if it extends a chain C whose

suffix C[−⌈ (1+ϵ)(m+u)
η ⌉:] contains a block containing tx. The requirement to look

only at the suffix ensures the NIPoPoW verifier does not need more than constant
communication resources and is not required to look at the full chain. The following
lemma ensures that the verifier will count all the difficulty contributed by the honest
parties.

Lemma 57. Consider a typical execution and a transaction tx diffused at round r.
Then all blocks honestly generated during rounds {r +∆ + u, · · · , r + u + m

f } will
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each result in a chain C whose suffix C[−⌈ (1+ϵ)(m+u)
η ⌉:] will contain tx.

Sketch. From the liveness of the underlying ledger, after u rounds tx will be included
in the chain of every honest party. However, since tx was generated at r, the chain
cannot have grown more than −(1+ϵ)(m+u)

η during u+ m
f rounds.

The above ensures that diff (S) ≥ Q({r + u, · · · , r + u + m
f }). This satisfies

the persistence requirement of the verifier. On the other hand, the freshness of tx
ensures that the adversary could not have contributed too much work to S. The
following lemma makes this more precise:

Lemma 58. Consider an (ϵ, η, θ)-typical execution. Let tx be a transaction diffused
during r and let S be the set of blocks observed by an honest party during rounds
r + u, · · · , r + u + m

f each of which creates a chain C in which tx is included in
C[−⌈ (1+ϵ)(m+u)

η ⌉:]. Let U = {r, · · · , r + u+ m
f }.

Then we have:

Q({r + u−∆, · · · , r + u+
m

f
+∆}) ≤ diff (S) ≤ Q(U) +A(U)

Sketch. The first inequality follows from Lemma 57. For the second, observe that
the adversary cannot use any queries made prior to r.

Removing balloon interactivity. The above protocol introduces some interac-
tivity in the sense that the verifier must produce the nonce in the balloon. However,
such interactivity is unnecessary as long as the verifier remains online for the dura-
tion of the difficulty sampling. We can modify our protocol to be non-interactive as
follows. Initially, the verifier comes online at round r and expects to be provided
with NIPoPoWs supporting an admissible chain. These NIPoPoWs must be gen-
erated and diffused within round r. Any interested parties (including honest and
adversarial parties) generate such NIPoPoWs and diffuse them on the network. At
round r + 1, any honest parties who have diffused NIPoPoWs look for competing
proofs that have been provided by other honest parties or the adversary. They
collect all such proofs into a set ⋄, which they order and encode. They subsequently
calculate the hash h of the result. This hash commits to all NIPoPoWs and can also
be calculated by the NIPoPoW verifier. The honest parties then diffuse a balloon
transaction containing h as a nonce. The NIPoPoW verifier calculates the same
nonce from the NIPoPoWs it has received and observes the difficulty collection on
the network as before. As soon as one epoch completes, the NIPoPoW verifier can
use the difficulty estimate as before.

Theorem 59 (Security). Consider an (ϵ, η, θ)-typical execution in the variable
difficulty ∆-bounded delay setting so that for every i we have ti < ( 14 − δ)ni. Then
the NIPoPoW prover of Algorithm 21, coupled with the verifier which follows the
balloon technique, is a secure PoPoW protocol.

Sketch. The theorem follows directly from Theorem 56 and Lemma 58.

Theorem 60 (Succinctness). If m ∈ O(log |C|) and computational power is non-
decreasing, then the superblock NIPoPoW construction is succinct.
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Sketch. The blocks of any level are sufficiently concentrated in the second half of
the chain (modulo the blocks that were suppressed by the adversary, which are
bounded in number due to the Unsuppressibility Lemma). Thus, after O(log |C|)
levels of the proof, the chain will be exhausted for a total length in O(m log |C|).

We remark that the number of blocks that must be inspected in any balloon
sampling is constant, and therefore the inclusion of such samples does not change
the succinctness of the verifier.
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Chapter 6

Proofs of Proof-of-Stake

In this short chapter, we introduce a novel cryptographic primitive, ad-hoc threshold
multisignatures (ATMS), fundamental building block for cross-chain certification
in proof-of-stake. We discuss specific instantiations of ATMS in Section 6.2. We
implement them in three distinct ways. The first one simply concatenates signatures
of elected slot leaders. While secure, the disadvantage of this implementation is
that the size of the sidechain certificate is Θ(k) signatures. An improvement can be
achieved by employing multisignatures and Merkle-tree hashing for verification key
aggregation; using this we can drop the sidechain-certificate size to Θ(r) signatures
where r slot leaders do not participate in its generation; in the optimistic case
r ≪ k and thus this scheme can be a significant improvement in practice. Finally,
we show that STARKs and bulletproofs [21, 31] can be used to bring down the size
of the certificate to be optimally succinct in the random oracle model. We observe
that in the case of an active sidechain (e.g., one that returns assets at least once
per epoch) our construction with succinct sidechain certificates has optimal storage
requirements in the mainchain.

These ATMS will be leveraged in the next chapters to build full sidechains in
the proof-of-stake model.

6.1 Ad-Hoc Threshold Multisignatures
We introduce a new primitive, ad-hoc threshold multisignatures (ATMS), which
borrow properties from multisignatures and threshold signatures and are ad-hoc
in the sense that signers need to be selected on the fly from an existing key set.
In Section 7.1.2 we describe how ATMS are useful for periodically updating the
“anchor of trust” that the mainchain parties have w.r.t. the sidechain they are not
following.

ATMS are parametrized by a threshold t. On top of the usual digital signatures
functionality, ATMS also provide a way to: (1) aggregate the public keys of a subset
of these parties into a single aggregate public key avk; (2) check that a given avk
was created using the right sequence of individual public keys; and (3) aggregate
t′ ≥ t individual signatures from t′ of the parties into a single aggregate signature
that can then be verified using avk, which is impossible if less than t individual
signatures are used.

The definition of an ATMS is given below.
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Definition 69. A t-ATMS is a tuple of algorithms Π = (PGen,Gen, Sig,Ver,AKey,
ACheck,ASig,AVer) where:

PGen(1κ) is the parameter generation algorithm that takes the security parameter
1κ and returns system parameters P.

Gen(P) is the key-generation algorithm that takes P and produces a public/private
key pair (vki, ski) for the party invoking it.

Sig(ski,m) is the signature algorithm as in an ordinary signature scheme: it takes
a private key and a message and produces a (so-called local) signature σ.

Ver(m, pki, σ) is the verification algorithm that takes a public key, a message and
a signature and returns true or false.

AKey(VK) is the key aggregation algorithm that takes a sequence of public keys VK
and aggregates them into an aggregate public key avk.

ACheck(VK, avk) is the aggregation-checking algorithm that takes a public key
sequence VK and an aggregate public key avk and returns true or false, de-
termining whether VK were used to produce avk.

ASig (m,VK, ⟨(vk1, σ1), · · · , (vkd, σd)⟩) is the signature-aggregation algorithm that
takes a message m, a sequence of public keys VK and a sequence of d pairs

⟨(vk1, σ1), · · · , (vkd, σd)⟩

where each σi is a local signature on m verifiable by vki and each vki is in a
distinct position within VK, ASig combines these into a multisignature σ that
can later be verified with respect to the aggregate public key avk produced from
VK (as long as d ≥ t, see below).

AVer(m, avk, σ) is the aggregate-signature verification algorithm that takes a mes-
sage m, an aggregate public key avk, and a multisignature σ, and returns true
or false.

Definition 70 (ATMS correctness). Let Π be a t-ATMS scheme initialized as
P ← PGen(1κ), let (vk1, sk1), · · · , (vkn, skn) be a sequence of keys generated via
Gen(P), let VK be a sequence containing (not necessarily unique) keys from the
above and avk be generated by invoking avk ← AKey(VK). Let m be any message
and let ⟨(vk1, σ1), · · · , (vkd, σd)⟩ be any sequence of key/signature pairs provided
that d ≥ t and every vki appears in a unique position in the sequence VK, where σi

is generated as σi = Sig(ski,m). Let σ ← ASig (m,VK, ⟨(vk1, σ1), · · · , (vkd, σd)⟩).
The scheme Π is correct if for every such message and sequence the following hold:

1. Ver(m, vki, σi) is true for all i;

2. ACheck(VK, avk) is true;

3. AVer(m, avk, σ) is true.

We define the security of an ATMS in the definition below, via a cryptographic
game given in Algorithm 39.
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Algorithm 39 The game ATMSΠ,A

The game is parameterized by a security parameter κ and an integer p(κ).
1: function ATMSΠ,A(κ, p(κ))
2: VK ← ϵ;SK ← ϵ;Qsig ← ∅;Qcor ← ∅
3: P ← PGen(1κ)
4: (m,σ, avk, keys)← AOgen,Osig(·,·),Ocor(·) (P)
5: q ← 0
6: for vk in keys do
7: if vk /∈ VK ∨ vk ∈ Qsig[m] ∪Qcor then
8: q ← q + 1
9: end if
10: end for
11: return AVer(m, avk, σ) ∧ ACheck(keys, avk) ∧ q < t
12: end function
13: function Ogen

14: (vk, sk)← Gen(P)
15: VK ← VK∥ vk
16: SK ← SK∥ sk return vk
17: end function
18: function Osig(i,m)
19: Qsig[m]← Qsig[m] ∪ {VK[i]} return Sig(SK[i],m)
20: end function
21: function Ocor(i)
22: Qcor ← Qcor ∪ {VK[i]} return SK[i]
23: end function

Figure 6.1: The ATMS security game ATMSΠ,A.
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Definition 71 (Security). A t-ATMS scheme Π = (PGen,Gen, Sig,Ver,AKey,ACheck,
ASig,AVer) is secure if for any PPT adversary A and any polynomial p there exists
some negligible function negl such that Pr[ATMSΠ,A(κ, p(κ)) = 1] < negl(κ) .

The quantity q in the ATMS game counts how many keys the adversary is in
control of among her chosen keys keys which will be used for aggregate-signature
verification. The sequence keys can contain both adversarially-generated keys as
well as some of the keys VK honestly generated by the challenger. The variable
q counts the number of adversarially controlled keys in keys. This includes those
keys in keys for which the adversary has obtained a signature for the message in
question (through the use of the oracle Osig(·)) or which the adversary has corrupted
completely (through the use of the oracle Ocor(·)), as well as those keys which have
been generated by the adversary herself and therefore are not in VK.

It is straightforward to see that if Π is a secure ATMS, then the tuple (PGen,
Gen, Sig,Ver) is a EUF-CMA-secure signature scheme.

Looking ahead, note that since the AKey algorithm is only invoked with the
public keys of the participants, it can be invoked by anyone, not just the parties
who hold the respective secret keys, as long as the public portion of their keys
is published. Furthermore, notice that the above games allow the adversary to
generate more public/private key pairs of their own and combine them at will.

Concrete instantiations of the ATMS primitive are presented in the next sec-
tions.

6.2 Constructing Ad-Hoc Threshold Multisigna-
tures

In this section we give several ways to instantiate the ATMS primitive. We order
them by increasing succinctness but also increasing complexity.

6.2.1 Plain ATMS
Given a EUF-CMA-secure signature scheme, combining signatures and keys can be
implemented by plain concatenation. Subsequently, combined verification requires
all signatures to be verified individually. This illustrates that the ATMS primitive
is easy to realize if no concern is given to succinctness. The size of these aggregate
signatures and aggregate keys is quadratic in the security parameter κ: for the
aggregate key 2k individual keys of size κ bits each are concatenated (with k =
Θ(κ)), while the aggregate signature consists of at least k+1 individual signatures
of size κ bits.

6.2.2 Multisignature-based ATMS
The previous construction can be improved by employing an appropriate multisig-
nature scheme. In the construction below, we consider the multisignature scheme
ΠMGS from [26].

We make use of a homomorphic property of this scheme: any d individual sig-
natures σ1, . . . , σd created using secret keys belonging to (not necessarily unique)
public keys vk1, . . . , vkd can be combined into a multisignature σ =

∏d
i=1 σi that

can then be verified using an aggregated public key avk =
∏d

i=1 vki.

178



Our multisignature-based t-ATMS construction works as follows: the procedures
PGen, Gen, Sig and Ver work exactly as in ΠMGS. Given a set S, denote by ⟨S⟩ a
Merkle-tree commitment to the set S created in some arbitrary, fixed, deterministic
way. Procedure AKey, given a sequence of public keys VK = {vki}ni=1 returns avk =
(
∏n

i=1 vki, ⟨VK⟩). Since AKey is deterministic, ACheck(VK, avk) simply recomputes
it to verify avk. ASig takes the messagem, d pairs of signatures with their respective
public keys {σi, vki}di=1 and n−d additional public keys {v̂ki}n−di=1 and produces an
aggregate signature

σ =

(
d∏

i=1

σi, {v̂ki}n−di=1 , {πv̂ki
}n−di=1

)
(6.1)

where π
v̂ki

denotes the (unique) inclusion proof of v̂ki in the Merkle commitment〈
{vki}di=1 ∪ {v̂ki}n−di=1

〉
.

Finally, the procedure AVer takes a message m, an aggregate key avk, and an
aggregate signature σ parsed as in (6.1), and does the following: (a) verifies that
each of the public keys v̂ki indeed belongs to a different leaf in the commitment
⟨VK⟩ in avk using membership proofs π

v̂ki
; (b) computes avk′ by dividing the first

part of avk by
∏n−d

i=1 v̂ki; (c) returns true if and only if d ≥ t and the first part of
σ verifies as a ΠMGS-signature under avk′.

Note that the schemeΠMGS requires vki to be accompanied by a (non-interactive)
proof-of-possession (POP) [129] of the respective secret key. This POP can be
appended to the public key and verified when the key is communicated in the
protocol. For conciseness, we omit these proofs-of-knowledge from the description
(but we include them in the size calculation below).

Asymptotic Complexity. This provides an improvement in our use case over
the plain scheme: In the optimistic case where each of the 2k committee members
create their local signatures, both the aggregate key avk and the aggregate signature
σ are linear in the security parameter, which is optimal. If r < k of the keys do not
provide their local signatures, the construction falls back to being quadratic in the
worst case if r = k− 1. However, for the practically relevant case where r ≪ k and
almost all slot leaders produced a signature, this construction is clearly preferable.

Concrete space requirements. Concrete signature sizes in this scheme for
practical parameters could be as follows. We set k = 2160 (as is done in the
Cardano implementations of [89]) and for the signature of [26] we have in bits:
|vki| = 272, |σi| = 528 (N. Di Prima, V. Hanquez, personal communication,
16 Mar 2018), with |vki + POP | = |vki| + |σi| = 800 bits. Assuming 256-bit
hash function is used for the Merkle tree construction, the size of the data which
needs to be included in MC in the optimistic case during an epoch transition is
|avk| + |σ| + |⟨pending⟩| = |vki + POP | + 2|H(·)| + |σi| = 800 + 512 + 528 = 1840
bits per epoch. In a case where 10% of participants fail to sign, the size will be
|avk|+ |σ| = |vki +POP |+2|H(·)|+ |σi|+0.1 · 2 · k(|vki +POP |+ log(k)|H(·)) =
800+512+528+432 ·(500+12 ·256) = 1544944, or about 190 KB per epoch (which
is approximately 5 days).
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6.2.3 ATMS From Proofs of Knowledge
While the aggregate signatures construction seems sufficient for practice, it still
requires a sc_cert transaction that is in the worst case quadratic in the security
parameter. The approach below, based on proofs of knowledge, improves on that.

We define avk ← AKey(VK) to be the root of a Merkle tree that has VK at
its leaves. Let Sig,Ver come from any secure signature scheme. In our ATMS, the
local signature is equal to si = Sig(ski,m), where ski is the secret key that corre-
sponds to the vki verification key. Letting S′ = {si} be the signatures generated
by a sequence VK′ containing keys in VK, the ASig(VK, S′,m) algorithm recon-
structs the Merkle tree from VK and determines the membership proof πi for each
vki ∈ VK′. Regarding the non-interactive argument of knowledge, the statement
of interest is (avk,m) with witness {πi, (si, vki)}i∈S′ such that for all i we have
that Ver(vki,m, si) = 1 and πi is a valid Merkle tree proof pointing to a unique
leaf for every i. πi demonstrates that vki is in avk. We also require |S′| ≥ t. It
is possible to construct succinct proofs for this statement using SNARKs [24] or
even without any trusted setup using e.g., STARKs [21] or Bulletproofs [31] in the
Random Oracle model [19]. In both cases the actual size of the resulting signature
will be at most logarithmic in k, while in the case of STARKs the verifier will also
have time complexity logarithmic in k.
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Chapter 7

Sidechains

We now have all the required tools and primitives to build sidechains. In this chap-
ter we construct full blockchain interoperability. We begin in Section 7.1 by giving
the definition of what sidechains are and a construction for stake-based blockchains
first, making use of the ATMS primitive defined and constructed in Chapter 6. In
Section 7.2 we show how one can construct sidechains for work-based blockchains
using the NIPoPoWs primitive which was discussed in Chapter 3. These two side-
chain constructions are bidirectional. In Section 7.3 we explore how money can
be destroyed on one system and re-created in another, giving rise to unidirectional
sidechains.

7.1 Bidirectional Sidechains with Stake Sources
In this section we give the first formal definition of security desiderata for a system
of pegged ledgers (popularly often called sidechains). We start by conveying its
intuition and then proceed to the formal treatment. We will first present a generic
framework defining sidechain security upon which we will build a solution for stake-
based blockchains. In the later sections of this chapter, we will explore how this
can be instantiated for proof-of-work.

To prove any meaningful security guarantees for the executed protocol without
further restrictions (as it, for example, does not prevent the adversary from cor-
rupting all the participating parties), we will consider such additional assumptions,
and will only provide security guarantees as long as such assumptions are satisfied.
These assumptions will be specific to the protocol in consideration, and will be an
explicit part of our statements.1

Without loss of generality, we give a detailed presentation of our construction
on a generic PoS protocol based on Ouroboros PoS [89] (see Chapter 2 for an
overview of Ouroboros). We give an overview of our construction for other proof-
of-stake schemes in Section 7.1.5, in particular for Ouroboros Praos [45], Ouroboros
Genesis [13], Snow White [22], and Algorand [113].

In this section, we formalize the notion of sidechains by proposing a rigorous
cryptographic definition, the first one to the best of our knowledge. The definition

1As an example, we will be assuming that a majority of a certain pool of stake is controlled by
uncorrupted parties.
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is abstract enough to be able to capture the security for blockchains based on proof-
of-work, proof-of-stake, and other consensus mechanisms.

A critical security feature of a sidechain system that we formalise is the firewall
property in which a catastrophic failure in one of the chains, such as a violation of its
security assumptions, does not make the other chains vulnerable providing a sense
of limited liability.2 The firewall property formalises and generalises the concept
of a blockchain firewall which was described in high level in [12]. Informally the
blockchain firewall suggests that no more money can ever return from the sidechain
than the amount that was moved into it. Our general firewall property allows
relying on an arbitrary definition of exactly how assets can correctly be moved back
and forth between the two chains, we capture this by a so-called validity language.
In case of failure, the firewall ensures that transfers from the sidechain into the
mainchain are rejected unless there exists a (not necessarily unique) plausible history
of events on the sidechain that could, in case the sidechain was still secure, cause
the particular transfers to take place.

In this section, we outline a concrete exemplary construction for sidechains for
proof-of-stake blockchains. For conciseness our construction is described with re-
spect to a generic PoS blockchain consistent with the Ouroboros protocol [89] that
underlies the Cardano blockchain, which is currently one of the largest pure PoS
blockchains by market capitalisation,3 nevertheless we also discuss how to modify
our construction to operate for Ouroboros Praos [45], Ouroboros Genesis [13], Snow
White [22] and Algorand [113].

We prove our construction secure using standard cryptographic assumptions.
We show that our construction (i) supports safe cross-chain value transfers when
the security assumptions of both chains are satisfied, namely that a majority of
honest stake exists in both chains, and (ii) in case of a one-sided failure, maintains
the firewall property, thus containing the damage to the chains whose security
conditions have been violated.

A critical consideration in a sidechain construction is safeguarding a new side-
chain in its initial “bootstrapping” stage against a “goldfinger” type of attack [94, 27].
Our construction features a mechanism we callmerged-staking that allows mainchain
stakeholders who have signalled sidechain awareness to create sidechain blocks even
without moving stake to the sidechain. In this way, sidechain security can be
maintained assuming honest stake majority among the entities that have signaled
sidechain awareness that, especially in the bootstrapping stage, are expected to be
a large superset of the set of stakeholders that maintain assets in the sidechain.

Our techniques can be used to facilitate various forms of 2-way peggings be-
tween two chains. As an illustrative example we focus on a parent-child mainchain-
sidechain configuration where sidechain nodes follow also the mainchain (what we
call direct observation) while mainchain nodes need to be able to receive crypto-

2To follow the analogy with the term of limited liability in corporate law, a catastrophic sidechain
failure is akin to a corporation going bankrupt and unable to pay its debtors. In a similar fashion, a
sidechain in which the security assumptions are violated may not be able to cover all of its debtors.
We give no assurances regarding assets residing on a sidechain if its security assumptions are broken.
However, in the same way that stakeholders of a corporation are personally protected in case of corporate
bankruptcy, the mainchain is also protected in case of sidechain security failures. Our security will
guarantee that each incoming transaction from a sidechain will always have a valid explanation in the
sidechain ledger independently of whether the underlying security assumptions are violated or not. A
simple embodiment of this rule is that a sidechain can return to the mainchain at most as many coins
as they have been sent to the sidechain over all time.

3See https://coinmarketcap.com.
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graphically certified signals from the sidechain maintainers, taking advantage of the
proof-of-stake nature of the underlying protocol. This is achieved by having main-
chain nodes maintain sufficient information about the sidechain that allows them
to authenticate a small subset of sidechain stakeholders that is sufficient to reliably
represent the view of a stakeholder majority on the sidechain. This piece of infor-
mation is updated in regular intervals to account for stake shifting on the sidechain.
Exploiting this, each withdrawal transaction from the sidechain to the mainchain
is signed by this small subset of sidechain stakeholders. To minimise overheads we
batch this authentication information and all the withdrawal transactions from the
sidechain in a single message that will be prepared once per “epoch.” We will refer
to this signaling as cross-chain certification.

In greater detail, adopting some terminology from [89] (see Chapter 2), the
sidechain certificate is constructed by obtaining signatures from the set of so-called
slot leaders of the last Θ(k) slots of the previous epoch, where k is the security
parameter. Subsequently, these signatures will be combined together with all nec-
essary information to convince the mainchain nodes (that do not have access to the
sidechain) that the sidechain certificate is valid.

After treating stake-based sidechains, we turn to work-based sidechains in later
sections.

7.1.1 Defining Security of Pegged Ledgers
We consider a setting where a set of parties run a protocol maintaining n ledgers
L1,L2, . . . ,Ln, each of the ledgers potentially carrying many different assets. (This
protocol might of course be a combination of subprotocols for each of the ledgers.)
For each i ∈ [n], we denote by Ai the security assumption required by Li: For

example, Ai may denote that there has never been a majority of hashing power
(or stake in a particular asset, on this ledger or elsewhere) under the control of
the adversary; that a particular entity (in case of a centralized ledger) was not
corrupted; and so on. We assume that all Ai are monotone in the sense that once
violated, they cannot become true again. Formally, Ai is a sequence of events Ai[t]
for each time slot t that satisfy ¬Ai[t]⇒ ¬Ai[t+ 1] for all t.

There is an a priori unlimited number of (types of) assets, each asset representing
e.g. a different cryptocurrency. For simplicity we assume that assets of the same
type are fungible, but our treatment easily covers also non-fungible assets. We will
allow specific rules of behavior for each asset (called validity languages), and each
asset behaves according to these rules on each of the ledgers where it is present.

We will fix an operator merge(·) that merges a set of ledger states L = {L1, L2,
. . . , Ln} into a single ledger state denoted by merge(L). We will discuss concrete
instantiations of merge(·) later, for now simply assume that some canonical way of
merging all ledger states into one is given.

Informally, at any point t during the execution, our security definition only
provides guarantees to the subset S of ledgers that have their security assumptions
Ai[t] satisfied (and hence are all considered uncorrupted). We require that:

- each ledger in S individually maintains both persistence and liveness;

- for each asset A, when looking at the sequence of all A-transactions σ that oc-
curred on the ledgers in S (sequentialized via the merge operator), there must
exist a hypothetical sequence of A-transactions τ that could have happened
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on the compromised ledgers, such that the merge of σ and τ would be valid
according to the validity language of A.

We now proceed to formalize the above intuition.

Definition 72 (Assets, syntactically valid transactions). For an asset A, we denote
by TA the valid transaction set of A, i.e., the set of all syntactically valid transactions
involving A. For a ledger L we denote by TL the set of transactions that can
be included into L. For notational convenience, we define TA,L ≜ TA ∩ TL. Let
Assets(L) denote the set of all assets that are supported by L. Formally, Assets(L) ≜
{A : TA,L ̸= ∅}.

We assume that each transaction pertains to a particular asset and belongs to a
particular ledger, i.e., for distinct A1 ̸= A2 and L1 ̸= L2, we have that TA1

∩TA2
= ∅

and TL1
∩ TL2

= ∅. However, our treatment can be easily generalized to alleviate
this restriction.

Definition 73 (Asset validity language). For an asset A we denote VA ⊆ T ∗A the
validity language pertaining to the asset.

We will be interested only in validity languages that are generated by extension
(see Definition 15) and which have transaction uniqueness (see Definition 16).

The following definition allows us to focus on a particular asset or ledger within
a sequence of transactions.

Definition 74 (Ledger state projection). Given a ledger state L, we call a projec-
tion of L with respect to a set X (and denote by πX (L)) the ledger state that is
obtained from L by removing all transactions not in X . To simplify notation, we
will use πA and πI as a shorthand for πTA and π⋃

i∈I TLi , denoting the projection
of the transactions of a ledger state with respect to particular asset A or a par-
ticular set of individual ledger indices. Naturally, for a language V we define the
projected language πX (V) := {πX (w) : w ∈ V}, which contains all the sequences of
transactions from the original language, each of them projected with respect to X .

The concept of effect transactions below captures ledger interoperability at the
syntactic level.

Definition 75 (Effect Transactions). For two ledgers L and L′, the effect mapping
is a mapping of the form effectL→L′ : TL → (TL′ ∪ {⊥}). A transaction tx′ =
effectL→L′(tx) ̸= ⊥ is called the effect transaction of the transaction tx.

Intuitively, for any transaction tx ∈ TL, let tx′ = effectL→L′(tx) be the cor-
responding transaction. The transaction tx′ ∈ TL′ ∪ {⊥} identifies the necessary
effect on ledger L′ of the event of the inclusion of the transaction tx into the ledger
L. With foresight, in an implementation of a system of ledgers where a “pegging”
exists, the transaction effectL→L′(tx) has to be eventually valid and includable in
L′ in response to the inclusion of tx in L. Additionally, we assume that an effect
transaction is always clearly identifiable as such, and its corresponding “sending”
transaction can be derived from it; our instantiation does have this property.

We use a special symbol ⊥ to indicate that the transaction tx does not neces-
sitate any action on L′ (this will be the case for most transactions). We will now
be interested mostly in transactions that do require an action on the other ledger.
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Definition 76 (Cross-Ledger Transfers). For two ledgers L and L′ and an effect
mapping effectL→L′(·), we refer to a transaction in TL that requires some effect
on L′ as a (L,L′)-cross-ledger transfer transaction (or cross-ledger transfer for
short). The set of all cross-ledger transfers is denoted by T cl

L,L′ ⊆ TL, formally
T cl
L,L′ ≜ {tx ∈ TL : effectL→L′(tx) ̸= ⊥}.

Given ledger states L1, L2, . . . , Ln, we need to consider a joint ordered view of the
transactions in all these ledgers. This is provided by the merge operator. Intuitively,
merge allows us to create a combined view of multiple ledgers, putting all of the
transactions across multiple ledgers into a linear ordering. We expect that even if
certain ledgers are missing from its input, merge is still able to produce a global
ordering for the remaining ledgers. With foresight, this ability of the merge operator
will enable us to reason about the situation when some ledgers fail: In that case,
the respective inputs to the merge function will be missing. The merge function
definition below depends on the effect mappings, we keep this dependence implicit
for simpler notation.

Definition 77 (Merging ledger states). The merge(·) function is any mapping
taking a subset of ledger states L ⊆ {L1, L2, . . . , Ln} and producing a ledger state
merge(L) such that:

1. Partitioning. The ledger states in L are disjoint subsequences of merge(L)
that cover the whole sequence merge(L).

2. Topological soundness. For any i ̸= j such that Li, Lj ∈ L and any two
transactions tx ∈ Li and tx′ ∈ Lj, if tx′ = effectLi→Lj

(tx) then tx precedes tx′
in merge(L).

We will require that our validity languages are correct in the following sense.

Definition 78 (Correctness of VA). A validity language VA is correct with re-
spect to a mapping merge (·), if for any ledger states L ≜ (L1, . . . , Ln) such that
πA (merge (L)) ∈ VA, indices i ̸= j, and any cross-ledger transfer tx ∈ Li ∩ T cl

Li,Lj

such that effectLi→Lj (tx) = tx′ ̸= ⊥ is not in Lj, we have

πA (merge (L1, . . . , Li, . . . , Lj ∥ tx′, . . . , Ln)) ∈ VA .

The above definition makes sure that if a cross-ledger transfer of an asset A is
included into some ledger Li and mandates an effect transaction on Lj , then the
inclusion of this effect transaction will be consistent with VA. Note that this does
not yet guarantee that the effect transaction will indeed be included into Lj , this
will be provided by the liveness of Lj required below.

We are now ready to give our main security definition. In what follows, we call
a system-of-ledgers protocol any protocol run by a (possibly dynamically changing)
set of parties that maintains an evolving state of n ledgers {Li}i∈[n].

Definition 79 (Pegging security). A system-of-ledgers protocol Π for {Li}i∈[n] is
pegging-secure with liveness parameter u ∈ N with respect to:

- a set of assumptions Ai for ledgers {Li}i∈[n],

- a merge mapping merge (·),

- validity languages VA for each A ∈
⋃

i∈[n] Assets(Li),
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if for all PPT adversaries, all slots t and for St ≜ {i : Ai[t] holds} we have that
except with negligible probability in the security parameter:

Ledger persistence: For each i ∈ St, Li satisfies the persistence property.

Ledger liveness: For each i ∈ St, Li satisfies the liveness property parametrized
by u.

Firewall: For all A ∈
⋃

i∈St Assets(Li),

πA (merge ({L∪i [t] : i ∈ St})) ∈ πSt(VA) .

Intuitively, the firewall property above gives the following guarantee: If the
security assumption of a particular sidechain has been violated, we demand that
the sequence of transactions σ that appears in the still uncompromised ledgers is a
valid projection of some word from the asset validity language onto these ledgers.
This means that there exists a sequence of transactions τ that could have happened
on the compromised ledgers, such that it would “justify” the current state of the
uncompromised ledgers as a valid state. Of course, we don’t know whether this
sequence τ actually occurred on the compromised ledger, however, given that this
ledger itself no longer provides any reliable state, this is the best guarantee we can
still offer to the uncompromised ledgers.

Looking ahead, when we define a particular validity language for our concrete,
fungible, constant-supply asset, we will see that this property will translate into
the mainchain maintaining “limited liability” towards the sidechain: the amount of
money transferred back from the sidechain can never exceed the amount of money
that was previously moved towards the sidechain, because no plausible history of
sidechain transactions can exist that would justify such a transfer.

7.1.2 Implementing Pegged Ledgers
We present a construction for pegged ledgers that is based on Ouroboros PoS [89],
but also applicable to other PoS systems such as Snow White [22] and Algo-
rand [113]. Our protocol will implement a system of ledgers with pegging security
according to Definition 79 under an assumption on the relative stake power of the
adversary that will be detailed below.

The main challenge in implementing pegged ledgers is to facilitate secure cross-
chain transfers. We consider two approaches to such transfers and refer to them as
direct observation or cross-chain certification. Consider two pegged ledgers L1 and
L2. Direct observation of L1 means that every node of L2 follows and validates
L1; it is easy to see that this enables transfers from L1 to L2. On the other hand,
cross-chain certification of L2 means that L1 contains appropriate cryptographic
information sufficient to validate data issued by the nodes following L2. This allows
transfers of assets from L2, as long as they are certified, to be accepted by L1-
nodes without following L2. The choice between direct observation and cross-chain
certification can be made independently for each direction of transfers between L1

and L2, any of the 4 variants is possible (cf. Figure 7.1).
Another aspect of implementing pegged ledgers in the PoS context is the choice

of stake distribution that underlies the PoS on each of the chains. We again consider
two options, which we call independent staking and merged staking. In independent
staking, blocks on say L1 are “produced by” coins from L1 (in other words, the
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Figure 7.1: Deployment options for PoS Sidechains.

block-creating rights on L1 are attributed based on the stake distribution recorded
on L1 only). In contrast, with merged staking, blocks on L1 are produced either
by coins on L1, or coins on L2 that have, via their staking key, declared support of
L1 (but otherwise remain on L1); see Figure 7.1. Also here, all 4 combinations are
possible.

In our construction we choose an exemplary configuration between two ledgers
L1 and L2, so that direct observation is applied to L1, cross-chain certification to
L2, independent-staking in L1 and merged staking in L2. As a result, all stakehold-
ers in L2 also keep track of chain development on L1 (and hence run a full node
for L1) while the opposite is not necessary, i.e., L1 stakeholders can be oblivious
of transactions and blocks being added to L2. This illustrates the two basic pos-
sibilities of pegging and can be easily adapted to any other of the configurations
between two ledgers in Figure 7.1.

In order to reflect the asymmetry between the two chains in our exemplary
construction we will refer to L1 as the “mainchain”MC, and to L2 as the “sidechain”
SC. To elaborate further on this concrete asymmetric use case, we also fully specify
how the sidechain can be initialized from scratch, assuming that the mainchain
already exists.

The pegging with the sidechain will be provided with respect to a specific asset of
MC that will be created onMC. Note thatMC as well as SCmay carry additional
assets but for simplicity we will assume that staking and pegging is accomplished
only via this single primary asset.

The presentation of the construction is organized as follows. In Section 7.1.2 we
use the ATMS primitive (introduced in Chapter 6) as a black box to build secure
pegged ledgers with respect to concrete instantiations of the functions merge and
effect and a validity language VA for asset A given in Section 7.1.2.

A Concrete Asset A

We now present an example of a simple fungible asset with fixed supply, which
we denote A, and describe its validity language VA. This will be the asset (and
validity language) considered in our construction and proof. While VA is simple
and natural, it allows us to exhibit the main features of our security treatment and
illustrate how it can be applied to more complex languages such as those capable of
capturing smart contracts; we omit such extensions in this version. Note that our
language is account-based, but a UTXO-based validity language can be considered
in a similar manner.
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Instantiating VA

The validity language VA for the asset A considers two ledgers: the mainchain ledger
L0 ≜ MC and the sidechain ledger L1 ≜ SC. For this asset, every transaction
tx ∈ TA has the form tx = (txid, lid, (send, sAcc), (rec, rAcc), v, σ), where:

• txid is a transaction identifier that prevents replay attacks. We assume that
txid contains sufficient information to identify lid by inspection and that this
is part of syntactic transaction validation.

• lid ∈ {0, 1} is the ledger index where the transaction belongs.

• send ∈ {0, 1} is the index of the sender ledger Lsend and sAcc is an account on
this ledger, this is the sender account. For simplicity, we assume that sAcc is
the public key of the account.

• rec ∈ {0, 1} is the index of the recipient ledger Lrec and rAcc is an account
(again represented by a public key) on this ledger, this is the recipient account.
We allow either Lsend = Lrec, which denotes a local transaction, or Lsend ̸= Lrec,
which denotes a remote transaction (i.e., a cross-ledger transfer).

• v is the amount to be transferred.

• σ is the signature of the sender, i.e. made with the private key corresponding
to the public key sAcc on the plaintext (txid, (send, sAcc), (rec, rAcc), v).

The correctness of lid is enforced by the ledgers, i.e., for both i ∈ {0, 1} the set
TA,Li

only contains transactions with lid = i. Note that although we sometimes
notationally distinguish between an account and the public key that is associated
with it, for simplicity we will assume that these are either identical or can always
be derived from one another (this assumption is not essential for our construction).

The membership-deciding algorithm for VA is presented in Algorithm 40. It
processes the sequence of transactions (tx1, tx2, . . . , txm) given to it as input in
their order. Assuming transactions are syntactically valid, the function verifies for
each transaction txi the freshness of txid, validity of the signature, and availability
of sufficient funds on the sending account. For an intra-ledger transaction (i.e., one
that has send = rec), these are all the performed checks.

More interestingly, VA also allows for cross-ledger transfers. Such transfers are
expressed by a pair of transactions in which send ̸= rec. The first transaction
appears in lid = send, while the second transaction appears in lid = rec. The two
transactions are identical except for this change in lid (this is the only exception
to the txid-freshness requirement). Every receiving transaction has to be preceded
by a matching sending transaction. Cross-chain transactions have to, similarly to
intra-ledger transactions, conform to laws of balance conservation.

Note that VA does not require that every “sending” cross-ledger transaction on
the sender ledger is matched by a “receiving” transaction on the receiving ledger.
Hence, if the asset A is sent from ledger Lsend but has not yet arrived on Lrec then
validity for this asset is not violated. All the validity language ensures is that
appending the sidechain_receive transaction to the rec will eventually be a valid
way to extend the receiving ledger, as long as the sidechain_send transaction has
been included in send.
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Algorithm 40 The transaction sequence validator (membership-deciding algorithm
for VA).
1: function valid-seq(t⃗x)
2: balance← Initial stake distribution
3: seen← ∅
4: ▷ Traverse transactions in order
5: for tx ∈ t⃗x do
6: ▷ Destructure tx into its constituents
7: (txid, lid, (send, sAcc), (rec, rAcc), v, σ)← tx
8: if ¬valid(σ) then
9: return false
10: end if
11: if lid = send then
12: ▷ Replay protection
13: if seen[txid] ̸= 0 then
14: return false
15: end if
16: ▷ Law of conservation
17: if balance[send][sAcc]− v < 0 then
18: return false
19: end if
20: else
21: ▷ The case lid = rec ̸= send
22: if seen[txid] ̸= 1 then
23: return false
24: end if
25: ▷ Cross-ledger validity
26: tx′ ← effect−1L(1−lid)→Llid

(tx)
27: if tx′ has not appeared before then
28: return false
29: end if
30: end if
31: if seen[txid] = 0 then
32: ▷ Update sender balance when money departs
33: balance[send][sAcc] −= v
34: end if
35: ▷ Update receiver balance when money arrives
36: if (seen[txid] = 0 ∧ send = rec) ∨ (seen[txid] = 1 ∧ send ̸= rec) then
37: balance[rec][rAcc] += v
38: end if
39: seen[txid]+ = 1
40: end for
41: return true
42: end function
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Instantiating effectLi→Lj

For the simple asset A outlined above, every cross-ledger transfer is a “sending”
transaction tx with Llid = Lsend ̸= Lrec appearing in Lsend, and its effect transaction is
a “receiving” transaction tx′ with Llid = Lrec ̸= Lsend in Lrec that is otherwise identical
(except for the different lid′ = 1 − lid). Hence, we define effectLsend→Lrec(tx) = tx′
exactly for all these transactions and no other.

Instantiating merge(·)

It is easy to construct a canonical function merge(·) once we see its inputs not only
as ledger states (i.e., sequences of transactions) but we also exploit the additional
structure of the blockchains carrying those ledgers. The canonical merge of the
set of ledger states L is the lexicographically minimum topologically sound merge,
in which transactions of ledger Li are compared favourably to transactions in Lj
if i < j. However, note that the construction we provide below will work for any
topologically sound merge function.

One can easily observe the following statement.

Proposition 61. The validity language VA is correct (according to Definition 78)
with respect to the merge function defined above.

The Sidechain Construction

We now describe the procedures for running a sidechain in the configuration outlined
at the beginning of this section: with independent staking on MC and merged
staking on SC; direct observation of MC and cross-chain certification of SC. We
describe the sidechain’s creation, maintenance, and the way assets can be transferred
to it and back. The protocol we describe below is quite complex, we hence choose
to describe different parts of the protocol in differing levels of detail. This level
is always chosen with the intention to allow the reader to easily fill in the details.
A graphical depiction of our construction that can serve as a reference is given in
Figure 7.2.

Notation Where applicable, we denote the analogues of the mainchain objects on
the sidechain with an additional overline. In our pseudocode, we use the statement
“post tx to L” to refer to the action of broadcasting the transaction tx to the
maintainers of the ledger L so that they include it in the ledger eventually as
prescribed by the protocol. Unless indicated otherwise, we also denote byMC (resp.
SC) the current ledger state of the ledger MC (resp. SC) as viewed by the party
executing the protocol. Similarly, we denote by CMC (resp. CSC) the currently held
chain corresponding to the ledger MC (resp. SC). Hence, for example MC always
represents the state stored in the stable part of the chain CMC.

Helper Transactions and Data The construction uses a set of helper transac-
tions which can be included in both blockchains, but do not get reported in the
respective ledgers. These helper transactions store the appropriate metadata which
is implementation-specific and allow the pegging functionality to be maintained.
The transaction types sidechain_support, sidechain_certificate, sidechain_success
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Figure 7.2: Our sidechain construction. Blocks are shown as rectangles. Adjacent
blocks connect with straight lines. Squiggly lines indicate some blocks are omitted.
MC is at the top, SC at the bottom. Epochs are separated by dashed lines. ejadopt
is the epoch of first signalling; ejstart is the activation epoch. Blocks of interest:
1. The first block signalling SC awareness; 2. The SC genesis block; 3. A txsend
transaction for a deposit; 4. A txrec transaction for a deposit; 5. A txsend transaction
for withdrawal; 6. A sc_cert transaction signalling trust transition within SC and
certifying pending withdrawals; 7. A txrec transaction for withdrawal, certified in a
sc_cert transaction e.g. in block 6.

and sidechain_failure, whose nature will be detailed later, are of this kind. More-
over, our concrete implementation of pegged ledgers extends certain transactions
with additional information (such as Merkle-tree inclusion proofs) that are, for con-
venience, understood to be stripped off these transactions when the blockchain is
interpreted as a ledger.

Initialisation The creation of a new sidechain SC starts by any of the stakehold-
ers of the mainchain adopting the code that implements the sidechain. This action
does not require the stakeholders to put stake on the sidechain but merely to run
the code to support it (e.g. by installing a pluggable module into their client soft-
ware). In the following this is referred to as “adopting the sidechain” and captured
by the predicate SidechainAdoption. The adoption is announced at the mainchain
by a special transaction detailed below. Each sidechain is identified by a unique
identifier idSC.

Let jadopt denote the epoch on MC when the first adoption transaction has ap-
peared; the sidechain SC – if its activation succeeds as discussed below – will start
at the beginning of some later epoch jstart and will have its slots and epochs syn-
chronized with MC. The software module implementing the sidechain comes with
a set of deterministic rules describing the requirements for the successful activation
of the sidechain, as well as for determining jstart. These rules are sidechain-specific
and are captured in a predicate ActivationSuccess and a function ActivationEpoch,
respectively. One typical such example is the following: the sidechain starts at the
beginning ofMC-epoch jstart for the smallest jstart that satisfies: (i) jstart−jadopt > c1;
(ii) at least c2-fraction of stake on MC is controlled by stakeholders that have
adopted SC; for some constants c1,c2. Additionally, if such a successful activation
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does not occur until a failure condition captured by a predicate ActivationFailure is
met (e.g. until a predetermined period of c3 > c1 epochs has passed), the sidechain
initialization is aborted.

The activation process then follows the steps outlined below, the detailed de-
scription is given in Algorithm 41).

Algorithm 41 Sidechain initialisation procedures.

The algorithm is run by every stakeholder U that adopted the sidechain. We denote
by (vk, sk) its public and private keys.

1: upon SidechainAdoption(idSC) do
2: sidechain_state[idSC]← initializing
3: (vk′, sk′)← Gen(P)
4: σ ← Sigsk(sidechain_support(idSC, vk, vk′))
5: post sidechain_support(idSC, vk, vk′, σ) to MC
6: end upon
7: upon MC.NewEpoch() do
8: j ←MC.EpochIndex()
9: if sidechain_state[idSC] = initializing then
10: if ActivationFailure() then
11: sidechain_state[idSC]← failed
12: post sidechain_failure(idSC) to MC
13: else if ActivationSuccess() then
14: sidechain_state[idSC]← initialized
15: jstart ← ActivationEpoch()
16: Post sidechain_success(idSC) to MC
17: end if
18: end if
19: if sidechain_state[idSC] = initialized ∧ j = jstart then
20: η̄jstart ← H(idSC, ηjstart)
21: VKjstart ← 2k last slot leaders of ejstart in SC
22: avkjstart ← AKey(VKjstart)

23: G←
(
idSC, SDjstart , η̄jstart ,P, avkjstart

)
24: CSC ← (G)
25: end if
26: end upon

First, every stakeholder Ui of MC (holding a key pair (vk, sk)) that supports
the sidechain posts a special transaction sidechain_support(idSC, vk, vk′), signed by
sk into the mainchain. Here vk′ is a public key from an ATMS key pair freshly
generated by Ui; its role is explained in Section 7.1.2 below.

If the sidechain activation succeeds, then during the first slot of epoch jstart
the stakeholders of MC that support SC construct the genesis block G = (idSC,
SDjstart , η̄jstart ≜ H(idSC, ηjstart),P, avkjstart) for SC. ηjstart is the randomness for leader
election on MC in epoch jstart (derived on MC in epoch jstart − 1). It is reused
to compute the initial sidechain randomness η̄jstart as well, further η̄j′ for j′ > jstart
are determined independently on SC using the Ouroboros coin-tossing protocol.4

4This can be interpreted as usingMC to implement the setup functionality needed to bootstrap SC.
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Furthermore, P and avkjstart are public parameters and an aggregated public key of
an ATMS scheme; their creation and role is discussed in Section 7.1.2 below. Note
that G is defined mostly for notational compatibility, as SDjstart is empty at this
point anyway. G can be constructed as soon as ηjstart is known and stable.

The stakeholders that adopted SC create a transaction sidechain_success(idSC)
and post it intoMC to signify that SC has been initialized. If the sidechain creation
expires, then, after the first block of the next epoch after expiration occurs, the
stakeholders ofMC that supported SC post the transaction sidechain_failure(idSC)
toMC. We assume that both predicates ActivationSuccess and ActivationFailure can
be evaluated based on the state of MC only, and hence spurious success/failure
transactions will be considered invalid.

Maintenance Once the sidechain is created, both the mainchain and the side-
chain need to be maintained by their respective set of stakeholders (detailed below)
running their respective instance of the Ouroboros protocol.

In the case of the mainchain, the maintenance procedure is given in Algo-
rithm 42. This algorithm is run by all stakeholders controlling stake that is recorded
on the mainchain. Each stakeholder, on every new slot, collects all the candi-
date MC-chains from the network (modelled via the Diffuse functionality) and
filters them for both consensus-level validity (using MC.ValidateConsensusLevel)
and transaction validity (using the verifierMC predicate given in Algorithms 44
and 43). Out of the remaining valid chains, he chooses his new state CMC via
PickWinningChain. Then the stakeholder evaluates whether he is an eligible leader
for this slot, basing its selection on the stake distribution SDj and randomness ηj ,
which are determined once per epoch in accordance with the Ouroboros protocol.
If the stakeholder finds out he is a slot leader, he creates a new block B by in-
cluding all transactions currently valid with respect to CMC (as per the predicate
verifytxMC given also in Algorithm 43), appends it to the chain CMC and diffuses
the result5 for other parties to adopt.

The maintenance procedure for SC is similar, hence we only describe here how
it differs from Algorithm 42. Most importantly, it is executed by all stakeholders
who have adopted SC, irrespectively of whether they own any stake on SC. Recall
that the slots and epochs of the SC-instance of Ouroboros are aligned with the slots
and epochs of MC.

The first difference is that all ocurrences ofMC and CMC are naturally replaced
by SC and CSC, respectively. This also means that the validity of received chains
(resp. transactions), determined on line 13 (resp. 21), is decided based on predicate
verifierSC(·,CMC) (resp. verifytxSC(·)) instead of the predicate verifierMC(·) (resp.
verifytxMC(·)). Additionally, note that verifytxSC must be called with a sequence
of transactions containing both the transactions in SC as well as the transactions
in MC interspersed and timestamped, similarly to the way done in Line 2 of Algo-
rithm 46. This is straightforward to implement, as the sidechain maintainers also
directly observe the mainchain. The predicates verifytxSC and verifierSC are given
in Algorithms 45 and 46, respectively.

5As in [89, 45], we simplify our presentation by diffusing the complete chains, although a practical
implementation would only diffuse the block B.
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Algorithm 42 Mainchain maintenance procedures.

The algorithm is run by every stakeholder U with stake on MC in every epoch
j ≥ jstart, sk denotes the secret key of U . An analogous mainchain-maintaining
procedure was running also before jstart and is omitted.

1: upon MC.NewSlot() do
2: sl←MC.SlotIndex()
3: ▷ First slot of a new epoch
4: if sl mod R = 1 then
5: j ←MC.EpochIndex()
6: SDj ←MC.GetDistr(j)
7: ηj ←MC.GetRandomness(j)
8: end if
9: C ← chains received via Diffuse
10: ▷ Consensus-level validation
11: Cvalid ← Filter(C,MC.ValidateConsensusLevel)
12: ▷ Transaction-level validation
13: Cvalidtx ← Filter(Cvalid, verifierMC(·))
14: ▷ Apply chain selection rule
15: CMC ←MC.PickWinningChain(CMC, Cvalidtx)
16: ▷ Decide slot leadership based on SDj and ηj
17: if MC.SlotLeader(U, j, sl, SDj , ηj) then
18: prev← H(CMC[−1])
19: t⃗xstate ← transaction sequence in CMC
20: t⃗x← current transactions in mempool
21: t⃗xvalid ← verifytxMC(t⃗xstate ∥ t⃗x)[|t⃗xstate| :]
22: σ ← Sigsk(prev, t⃗xvalid)
23: B ← (prev, t⃗xvalid, σ)
24: CMC ← CMC ∥B
25: Diffuse(CMC)
26: end if
27: end upon
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Algorithm 43 The MC transaction verifier.
1: function verifytxMC(t⃗x)
2: bal← initial stake; avk ← initial aggregate key
3: seen← ∅; pool← 0; pfs_mtrs← ∅; pfs_used← ∅
4: for tx ∈ t⃗x do
5: if type(tx) = sc_cert then
6: (m,σ)← tx
7: if ¬AVer(m, avk, σ) then
8: continue
9: end if
10: (txs_root, avk′)← m; avk ← avk′; pfs_mtrs[txs_root]← true
11: else
12: (txid, lid, (send, sAcc), (rec, rAcc), v, σ)← tx
13: m← (txid, lid, (send, sAcc), (rec, rAcc), v)
14: if ¬Ver(m, sAcc, σ) ∨ seen[txid] ̸= 0 then
15: continue
16: end if
17: if lid = send then
18: if bal[sAcc]− v < 0 then
19: continue
20: end if
21: bal[sAcc] −= v
22: else if send ̸= rec then
23: π ← tx.π; (mtr, inclusion_pf)← π
24: if π ∈ pfs_used then
25: continue
26: end if
27: if mtr ̸∈ pfs_mtrs ∨ ¬mtr-ver(mtr, inclusion_pf) then
28: continue
29: end if
30: end if
31: if lid = rec then
32: bal[rAcc] += v
33: end if
34: if send ̸= rec then
35: if lid = send then
36: pool −= v
37: else
38: pool += v
39: end if
40: end if
41: end if
42: seen← seen ∥ tx
43: end for
44: return seen
45: end function
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Algorithm 44 The MC chain verifier.
1: function verifierMC(Cmc)
2: t⃗x← ∅
3: for B ∈ Cmc do
4: for tx ∈ B do
5: t⃗x← t⃗x ∥ tx
6: end for
7: end for
8: return t⃗x ̸= verifytxMC(t⃗x)
9: end function

Algorithm 45 The SC transaction verifier.
1: function verifytxSC(t⃗x)
2: bal[MC]← Initial MC stake
3: bal[SC]← Initial SC stake
4: mc_outgoing_tx← ∅; seen← ∅
5: for tx ∈ t⃗x do
6: (txid, lid, (send, sAcc), (rec, rAcc), v, σ, t)← tx
7: m← (txid, lid, (send, sAcc), (rec, rAcc), v)
8: if ¬Ver(sAcc,m, σ) ∨ seen[txid] ̸= 0 then
9: continue
10: end if
11: if lid = send then
12: if bal[send][sAcc]− v < 0 then
13: continue
14: end if
15: if lid =MC ∧ send ̸= rec then
16: mc_outgoing_tx[txid]← t+ 2k
17: end if
18: end if
19: if lid = rec then
20: if send ̸= rec then
21: ▷ Effect pre-image tx immature
22: if t < mc_outgoing_tx[txid] then
23: continue
24: end if
25: end if
26: bal[rec][rAcc] += v
27: end if
28: if lid = send then
29: bal[send][sAcc] −= v
30: end if
31: seen← seen ∥ tx
32: end forreturn seen
33: end function
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Algorithm 46 The SC verifier.
1: function verifierSC(Csc,Cmc)
2: t⃗x← annotatetxSC(Csc,Cmc) return t⃗x ̸= verifytxSC(t⃗x)
3: end function

Algorithm 47 The SC transaction annotation.
1: function annotatetxSC(Csc,Cmc)
2: t⃗x← ∅
3: for each time slot t do
4: t⃗x′ ← ϵ
5: if Csc has a block generated at slot t then
6: B ← the block in Csc generated at t
7: for tx ∈ B do
8: t⃗x′ ← t⃗x′ ∥ tx
9: end for
10: end if
11: if Cmc has a block generated at slot t then
12: B ← the block in Cmc generated at t
13: for tx ∈ B do
14: t⃗x′ ← t⃗x′ ∥ tx
15: end for
16: end if
17: for tx ∈ t⃗x′ do
18: ▷ Mark the time of each tx in t⃗x′

19: tx.t← t
20: end for
21: t⃗x← t⃗x ∥ t⃗x′

22: end forreturn t⃗x
23: end function

Second, instead of the stake distribution SDj determined on line 6, a different
distribution SD

∗
j is determined to be used for slot leader selection in the j-th epoch

of the sidechain. The distribution SD
∗
contains all stake belonging to stakeholders

that have adopted SC, irrespectively of whether this stake is located onMC or SC
(we call such stake SC-aware). It can be obtained by combining the distribution SD
as recorded in SC with the distribution of SC-aware stake onMC (which is known
to SC-maintainers via direct observation of MC). Note that the distribution used
for epoch j reflects the stake distribution of SC-aware stake in the past, namely by
slot 4k of epoch j − 1, just as in MC. Naturally, this also implies that the fourth
parameter for the SlotLeader predicate on line 17 is SD

∗
j instead of SDj .

Finally, the block construction procedure on line 23 is adjusted so that in
the last 2k slots of each epoch, the created blocks on the sidechain also con-
tain an additional ATMS signature of a so-called sidechain certificate (how this
certificate is constructed and used will be described below). Hence, whenever
sl mod R > 10k, line 23 is replaced by B ← (prev, t⃗xvalid, σ, σsc_certj+1

) where
σsc_certj+1

= Sigsk(sc_certj+1) and j is the current epoch index.
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Depositing to SC Once SC is initialized, cross-chain transfers to it can be made
fromMC. A cross-chain transfer operation in this case consists of two transactions
txsend and txrec that both have send = MC, rec = SC, and all other fields are also
identical, except that each txi for i ∈ {send, rec} contains lid = i. The sending
transaction txsend is meant to be included in MC, while the receiving transaction
txrec is meant to be included in SC.

Whenever a stakeholder on MC that has adopted SC wants to transfer funds
to SC, she diffuses txsend with the correct receiving account on SC and the desired
amount. Honest slot leaders in MC include these transactions into their blocks
just like any intra-chain transfer transactions. Maintainers of MC keep account of
a variable poolSC, initially set to zero. Whenever a txsend is included intoMC, they
increase poolSC by the amount of this transaction.

When txsend becomes stable in MC (i.e., appears in MC, this happens at most
2k slots after its inclusion), the stakeholder creates and diffuses the corresponding
txrec which credits the respective amount of coins to rAcc in SC, to be included
into SC. In practice, this is akin to a coinbase transaction, as the money was not
transferred from an existing SC account.

Note that depositing from MC to SC is relatively fast; it merely requires a
reliable inclusion of txsend intoMC and consequently of txrec into SC, as guaranteed
by the liveness of the underlying Ouroboros instances. The depositing algorithm
code is shown in Algorithm 48.

Algorithm 48 Depositing from MC to SC.

The algorithm is run by a stakeholder U in control of the secret key sk corresponding
to the account sAcc on MC.

1: function Send(sAcc, rAcc, v) ▷ Send v from sAcc on MC to rAcc on SC
2: txid $← {0, 1}k
3: σ ← Sigsk (txid,MC, (MC, sAcc), (SC, rAcc), v)
4: txsend ← (txid,MC, (MC, sAcc), (SC, rAcc), v, σ)
5: post txsend to MC
6: end function
7: function Receive(txid, sAcc, rAcc, v)
8: wait until txsend ∈ MC ▷ MC is the stable part of MC
9: σ ← Sigsk (txid,SC, (MC, sAcc), (SC, rAcc), v)
10: txrec ← (txid,SC, (MC, sAcc), (SC, rAcc), v, σ)
11: post txrec to SC
12: end function

Withdrawing to MC The withdrawal operation is more cumbersome than the
depositing operation since not all nodes ofMC have adopted (i.e., are aware of and
follow) the sidechain SC. As transactions, the withdrawals have the same structure
as deposits, consisting of txsend and txrec, with the only difference that now they
both have send = SC and rec = MC. The sending transaction will be handled in
the same way as in the case of deposits, but the receiving transaction requires a
different certificate-based treatment, as detailed below.

Whenever a stakeholder in SC wishes to withdraw coins from SC to MC, she
creates and diffuses the respective transaction txsend with the correct transfer details
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as before. If txsend is included in a block that belongs in one of the first R − 4k
slots of some epoch then let jsend denote the index of this epoch, otherwise let jsend
denote the index of the following epoch. The stakeholder then waits for the end of
the epoch ejsend to pass and ejsend+1 to begin.

At the beginning of ejsend+1, a special transaction called sidechain certificate
sc_certjsend+1 is generated by the maintainers of SC. It contains: (i) a Merkle-tree
commitment to all withdrawal transactions txsend that were included into SC during
last 4k slots of epoch jsend − 1 and the first R− 4k slots of epoch jsend (as these all
are already stable by slot R− 2k of epoch jsend); (ii) other information allowing the
maintainers of MC to inductively validate the certificate in every epoch. The con-
struction of sc_cert is detailed below, for now assume that the transaction provides
a proof that the included information about withdrawal transactions is correct. The
transaction sc_cert is broadcast into the MC network to be included into MC at
the beginning of ejsend+1 by the first honest slot leader.

The stakeholder who wishes to withdraw their money into MC now creates
and diffuses the transaction txrec to be included in MC. This transaction is only
included intoMC if it is considered valid, which means: (1) it is properly signed; (2)
it contains a Merkle inclusion proof confirming its presence in some already included
sidechain certificate; (3) its amount is less or equal to the current value of poolSC.
If included, MC-maintainers decrease the value of poolSC by the amount of this
transaction. The code of the withdrawal algorithm is illustrated in Algorithm 49.

Algorithm 49 Withdrawing from SC to MC.

The algorithm is run by a stakeholder U in control of the secret key sk corresponding
to the account sAcc on SC.

1: function Send(sAcc, rAcc, v) ▷ Send v from sAcc on SC to rAcc on MC
2: txid $← {0, 1}k
3: σ ← Sigsk (txid,SC, (SC, sAcc), (MC, rAcc), v)
4: txsend ← (txid,SC, (SC, sAcc), (MC, rAcc), v, σ)
5: post txsend to SC
6: end function
7: function Receive(txid, sAcc, rAcc, v)
8: wait until txsend ∈ CSC
9: j′ ← epoch where CSC contains txsend
10: if (txsend included in slot sl ≤ R− 4 of ej′) then
11: jsend ← j′

12: else
13: jsend ← j′ + 1
14: end if
15: wait until sc_certjsend+1 ∈ CMC
16: π ← Merkle-tree proof of txsend in sc_certjsend+1

17: σ ← Sigsk (txid,MC, (SC, sAcc), (MC, rAcc), v, π)
18: txrec ← (txid,MC, (SC, sAcc), (MC, rAcc), v, π, σ)
19: post txrec to MC
20: end function

The certificate transaction We now describe the construction of the sc_cert
transaction, also called the sidechain certificate, formally described in Algorithm 50).
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The role of the certificate produced by the end of epoch j − 1 to be included in

Algorithm 50 Constructing sidechain certificate sc_cert.

The algorithm is run by every SC-maintainer at the end of each epoch, j denotes
the index of the ending epoch.

1: function ConstructSCCert(j)
2: T ← last 4k slots of ej−1 and first R− 4k slots of ej
3: t⃗x← transactions included in SC during T
4: pendingj+1 ←

{
tx ∈ t⃗x : tx.send ̸= tx.rec

}
5: VKj+1 ← keys of last 2k SC slot leaders in ej+1

6: avkj+1 ← AKey(VKj+1)
7: m←

(〈
pendingj+1

〉
, avkj+1

)
8: VKj ← keys of last 2k SC slot leaders for ej
9: σj+1 ← ASig

(
m, {(vki, σi)}di=1 ,VKj

)
10: sc_certj+1 ← (

〈
pendingj+1

〉
, avkj+1, σj+1) return sc_certj+1

11: end function

MC at the beginning of epoch j (denoted sc_certj) is to attest all the withdrawals
that had their sending transactions included into SC in either the last 4k slots of
ej−2 or the first R − 4k slots of ej−1. To maintain a chain of trust for the MC
maintainers that cannot verify these transactions by observing SC, we make use of
ad-hoc threshold multisignatures introduced in Section 6.1. Namely, the sc_certj
transaction also contains an aggregate key avkj of an ATMS, and is signed by the
previous aggregate key avkj−1 included in sc_certj−1.

sc_certj is generated by SC-maintainers and contains:

• The epoch index j.

• The pending transactions from SC to MC. Let t⃗x be the sequence of
all transactions which are included in SC during either the last 4k slots of
ej−2 or the first R − 4k slots of ej . All transactions in t⃗x that have SC =
send ̸= rec = MC are picked up and combined into a list pendingj (sorted in
the same order as in SC). Let

〈
pendingj

〉
denote a Merkle-tree commitment

to this list.

• The new ATMS key avkj. The key is created from the public keys of the
slot leaders of the last 2k slots of the epoch j, using threshold k+1. Hence, it
allows to verify whether a particular signature comes from k + 1 out of these
2k keys.

• Signature valid with respect to avkj−1.

The full sc_certj is therefore a tuple
(
j, ⟨pendingj⟩, avkj , σj

)
, where σj is an ATMS

signature on the preceding elements that verifies using avkj−1.
The certificate sc_certj+1 is constructed as follows: Both the stake distribution

SD
∗
j+1 and the SC-randomness η̄j+1 (and hence also the slot leader schedule for

SC in epoch j+1) are determined by the states of the blockchainsMC and SC by
the end of slot 10k of epoch j. Therefore, during the last 2k slots of epoch j, the 2k
elected slot leaders for these slots can already include a (local) signature on (their
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proposal of) sc_certj+1 into the blocks they create. Given the deterministic con-
struction of sc_certj+1, all valid blocks ending up in the part of SC-chain belonging
to the last 2k slots of epoch j will contain a local signature on the same sc_certj+1,
and by the chain growth property of the underlying blockchain, there will be at
least k + 1 of them. Therefore, any party observing SC can now combine these
signatures into an ATMS that can be later verified using the ATMS key avkj , it
can hence create the complete certificate sc_certj+1 and serve it to the maintainers
of MC for inclusion.

Transitioning trust As already outlined above, our construction uses ATMS to
maintain the authenticity of the sidechain certificates from epoch to epoch. We now
describe this inductive process in greater detail.

Initially, during the setup of the sidechain, P ← PGen(1κ) is ran. Stakeholders
generate their keys by invoking (ski, vki)← Gen(P). In case Gen(·) is a probabilistic
algorithm, it is run in a derandomized fashion with its coins fixed to the output of
a PRNG that is seeded by H(ats_init, ηjstart) where “ats_init” is a fixed label and
H is a hash function. This ensures that P will be uniquely determined and will
still be unpredictable. We note that this process is only suitable for ATMS that
employ public-coin parameters; our ATMS constructions in Section 6.2 are only of
this type.

For the induction base, P is published as part of the Genesis block G. Each
time an MC stakeholder Ui posts the sidechain_support message to MC, he also
includes an ATMS key vki. Subsequently, when the SC is initialised, the stake
distribution SD

∗
jstart is known to the MC participants. Hence, based on SD

∗
jstart and

η̄jstart , these can determine the last 2k slot leaders of epoch jstart in SC, we will refer
to them as the jstart-th trust committee. (In general, the j-th trust committee for
j ≥ jstart will be the set of last 2k slot leaders in epoch j.) SC-maintainers (that also
follow MC) can also determine the jstart-th trust committee and therefore create
avkjstart from their public keys and insert it into the genesis block G of SC. They
can also serve it as a special transaction to theMC-maintainers to include into the
mainchain. The correctness of avkjstart can be readily verified by anyone following
the mainchain using the procedure ACheck of the used ATMS.

For the induction step, consider an epoch j > jstart and assume that there exists
an ATMS key of the previous epoch avkj−1, known to the mainchain maintainers.
Every honest SC slot leader among the last 2k slot leaders of SC epoch j − 1
will produce a local signature sji on the message m = (j, ⟨pendingj⟩, avkj) using
their private key skj−1i by running Sig(skj−1i ,m), and include this signature into
the block they create. The rest of the SC maintainers will verify that the epoch
index, avkj and ⟨pendingj⟩ are correct (by ensuring ACheck(VKj , avkj) is true for
VK denoting the public keys of the last 2k slot leaders on SC for epoch j, and
by recomputing the Merkle tree commitment ⟨pendingj⟩) and that sji is valid by
running Ver(m, vkj−1i , sji ), otherwise the block is considered invalid. Thanks to the
chain growth property of the underlying Ouroboros protocol, after the last 2k slots of
epoch j−1 the honest sidechain maintainers will all observe at least k+1 signatures
among the {sji : i ∈ [2k]} desired ones. They then combine all of these local
signatures into an aggregated ATMS signature σj ← ASig(m, {(sji , vk

j−1
i )}, keysj).

This combined signature is then diffused as part of sc_certj on the mainchain
network. The mainchain maintainers verify that it has been signed by the sidechain
maintainers by checking that AVer(m, avkj−1, σj) evaluates to true and include it
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in a mainchain block. This effectively hands over control to the new committee.

7.1.3 Security of Sidechains
In this section we give a formal argument establishing that the construction from
Section 7.1.2 achieves pegging security of Definition 79.

Assumptions

Let Ahm(L)[t] denote the honest-majority assumption for an Ouroboros ledger L.
Namely, Ahm(L)[t] postulates that in all slots t′ ≤ t, the majority of stake in the
stake distribution used to sample the slot leader for slot t′ in L is controlled by
honest parties (note that the distribution in question is SD and SD

∗
for MC and

SC, respectively). Specifically, the adversary is restricted to (1− ϵ)/2 relative stake
for some fixed ϵ > 0.

The assumption AMC we consider for MC is precisely AMC[t] ≜ Ahm(MC)[t],
while the assumption ASC for SC is ASC[t] ≜ AMC[t] ∧ Ahm(SC)[t]. The reason
that ASC[t] ⇒ AMC[t] is that SC uses merged staking and hence cannot provide
any security guarantees if the stake records onMC get corrupted. It is worth noting
that it is possible to program SC to wean offMC and switch to independent staking;
in such case the assumption for SC will transition to Ahm(SC) (now with respect to
SD) after the weaning slot and the two chains will become sidechains of each other.

Remark 10. We note that the assumption of honest majority in the distribution
out of which leaders are sampled is one of two related ways of stating this require-
ment. The distribution from which sampling is performed corresponds to the actual
stake distribution near the end of the previous epoch. Hence, the actual stake may
have since shifted and may no longer be honest. Had we wanted to formulate this
assumption in terms of the actual (current) stake distribution, we would have to
state two different assumptions: (1) that the current actual stake has honest major-
ity with some gap σ; and (2) that the rate of stake shifting is bounded by σ for the
duration of (roughly) 2 epochs. From these two assumptions, one can conclude that
the distribution from which leaders are elected is currently controlled by an honest
majority. The latter approach was taken for example in [89].

Proof Overview

Proving our construction secure requires some case analysis. We summarize the
intuition behind this endeavour before we proceed with the formal treatment.

The proof of Theorem 69 that shows that our construction from Section 7.1.2
has pegging security with overwhelming probability will be established as follows.
We will borrow the fact that our construction achieves persistence and liveness from
the original analysis [89] and state them as Lemma 62. The main challenge will
be to establish the firewall property, which is done in Lemma 68. These properties
together establish pegging security as required by Definition 79.

To show that the firewall property holds, we perform a case analysis, looking at
the two cases of interest: when bothMC and SC are secure (i.e., when AMC∧ASC
holds), and when only MC is secure while the security assumption of SC has been
violated. As discussed above, the case where SC is secure and the security of MC
has been violated cannot occur per definition of AMC and ASC, and so examining
this case is not necessary.
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First, we examine the case where bothMC and SC are secure, but only concern
ourselves with direct observation transactions, or transactions that can be verified
without relying on sidechain certificates. We show that such transactions will always
be correctly verified in this case.

Next, we establish that, when only MC is secure, it is impossible for the MC
maintainers to accept a view inconsistent with the validity language, and hence the
firewall property is maintained in the case of a sidechain failure.

Finally, the heart of the proof is a computational reduction (using the above
partial results) showing how, given an adversary that breaks the firewall property,
there must exist a receiving transaction on MC which breaks the validity of the
scheme. Given such a transaction, we can construct an adversary against either the
security of the underlying ATMS scheme or the collision resistance of the underlying
hash function.

Liveness and Persistence

We begin by stating the persistence and liveness guarantees of our construction,
they both follow directly from the guarantees shown for the standalone Ouroboros
blockchain in [89].

Lemma 62 (Persistence and Liveness). Consider the construction of Section 7.1.2
with the assumptions ASC,AMC. For all slots t, if ASC[t] (resp. AMC[t]) holds, then
SC (resp. MC) satisfies persistence and liveness up to slot t with overwhelming
probability in k.

We now restate the Common Prefix property of blockchains for future reference.
If the Common Prefix property holds, then Persistence can be derived along the
lines of [89].

Definition 80 (Common Prefix). For every honest party P1 and P2 both maintain-
ing the same ledger (i.e., either both maintaining MC, or both maintaining SC)
and for every slot r1 and r2 such that r1 ≤ r2 ≤ t, let C1 be the adopted chain of
P1 at slot r1 and C2 be the adopted chain of P2 at slot r2. The k-common prefix
property for slot t states that C2[: |C1[: −k]|] = C1[: −k].

The Firewall Property and MC-Receiving Transactions

Recall that the transactions in TA can be partitioned into several classes with
different validity-checking procedures. First, there are local transactions (where
send = rec = lid) and sending transactions (with lid = send ̸= rec). Then we
have receiving transactions (with send ̸= rec = lid), which can be split into SC-
receiving transactions (send ̸= rec = lid = SC) and MC-receiving transactions
(send ̸= rec = lid =MC).

As the lemma below observes, if a transaction violates the firewall property in
a certain situation, it must be an MC-receiving transaction.

Lemma 63. Consider an execution of the protocol of Section 7.1.2 at slot t in
which MC and SC satisfy persistence. Suppose

L = merge ({L∪MC[t], L
∪
SC[t]}) ̸∈ VA

and suppose that St = {SC,MC}. Let L′ be the minimum prefix of L such that
L′ ̸∈ VA. Then L′ ̸= ε and tx ≜ L′[−1] is an MC-receiving transaction.
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Proof. The base property of the validity language implies L′ ̸= ε, hence tx exists.
Due to the minimality of L′, Algorithm 40 returns false for L′ but true for L′[: −1].
Since it processes transactions sequentially, it must return false during the process-
ing of tx. Suppose for contradiction that tx is not anMC-receiving transaction; let
us call such a transaction direct in this proof.

Algorithm 40 can output false while processing a direct transaction in the fol-
lowing cases: (a) in Line 18 when there is a Conservation Law violation; (b) in
Line 9 when there is a signature validation failure; (c) in Line 14 when tx is a replay
of a previous transaction; (d) in Line 23 when tx is a replay, or (e) in Line 28 when
the pre-image transaction has not yet been processed. Hence, tx falls under one of
these violations.

Due to persistence and the definition of L∪MC[t] and L∪SC[t], there exists an MC
maintainer PMC and an SC maintainer PSC, such that LPMC

MC [t] = L∪MC[t] and
LPSC
SC [t] = L∪SC[t], respectively. Due to the partitioning property of merge, tx will
be in LPlid(tx)

lid(tx) [t]. We separately consider the two possibilities for lid(tx).
Case 1: lid(tx) = MC. In this case, the only violations that a direct tx can

attain are (a), (b) and (c), as the cases (d) and (e) for lid(tx) = MC do not per-
tain to a direct transaction. PMC has reported LPMC

MC [t] as its adopted state, hence
LPMC
MC [t] is a fixpoint of verifytxMC (as verifytxMC checks for a fixpoint). The exe-
cution of verifytxMC included every transaction in LPMC

MC [t]. Therefore, verifytxMC
has accepted every transaction in every iteration until the last iteration, which
processes tx. Consider, now, what happened in the last iteration of the execution
of verifytxMC. In that iteration, verifytxMC checks the validity of σ, the Conser-
vation Law, and transaction replay. In all cases (a), (b) and (c), verifytxMC will
reject tx. But this could not have happened, as LPMC

MC [t] is a fixpoint, and we have a
contradiction.

Case 2: lid(tx) = SC. Let Cmc and Csc be the MC and respectively SC chain
adopted by PSC at slot t (and recall that PSC maintains both chains). Let Cmc

′ be
the chain adopted by PMC at slot t. As before, annotatetxSC(Cmc,Csc) must be a
fixpoint of verifytxSC (as verifytxSC checks for a fixpoint). As in the previous case,
tx cannot violate (a), (b), (c) and in this case nor (d), as this would constitute a
fixpoint violation. Hence tx is an effect transaction and we will examine whether tx
constitutes a violation of (e).

Let tx−1 ≜ effect−1MC→SC(tx). Since tx is accepted by verifytxSC on input
annotatetxSC(Cmc,Csc), we deduce that there exists some block B ∈ Cmc[: − k]
with tx−1 ∈ B. But Cmc

′[:− k] is the longest stable chain among MC maintainers
(due to L∪MC[t] = LPMC

MC [t]), hence Cmc[:− k] is its prefix. Therefore B ∈ Cmc
′[:− k].

Hence, tx−1 ∈ LPMC
MC [t]. Due to the partioning property of merge, tx−1 must appear

in the output of merge
(
{LPMC

MC [t], LPSC
SC [t]}

)
. Due to the topological soundness of

merge, tx−1 must appear before tx in merge
(
{LPMC

MC [t], LPSC
SC [t]}

)
. Hence, it cannot

be the case that (e) is violated, as the pre-image transaction exists.

Firewall Property During Sidechain Failure

We now turn our attention to the case where the sidechain has suffered a “catas-
trophic failure” and so St = {MC}. We describe why a catastrophic failure in the
sidechain does not violate the firewall property. To do this, we need to illustrate
that, given a transaction sequence L which is accepted by the MC verifier, we can
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“fill in the gaps” with transactions from SC in order to produce a new transaction
sequence t⃗x which is valid with respect to VA.

We prove this constructively in Lemma 65. The construction of such a sequence
is described in Algorithm 51. The algorithm accepts a transaction sequence L ⊆
TMC valid according to verifierMC and produces a transaction sequence t⃗x ∈ VA

satisfying πMC(t⃗x) = L, as desired.
The algorithm works by mapping each tx ∈ L to one or more transactions in t⃗x.

The mapping is done by calling plausibility-map(tx) for each transaction individually.
Hence each transaction in t⃗x has a specific preimage transaction in L, which can be
shared by other transactions in t⃗x. The mapping is performed as follows. If tx is a
local transaction, then it is simply copied over, otherwise some extra transactions
are included. Specifically, if it’s an sending transaction tx, then first tx is included,
and subsequently the funds are recovered by a corresponding transaction tx1 on
SC, the effect transaction of tx. The funds are afterwards moved to a pool address
poolpk by a transaction tx2. (Note that for this, we assume that the receiving
account public key has a correspnding private key, as this key is needed to sign tx2.
As we are only demonstrating the existence of t⃗x, Algorithm 51 does not need to be
efficient and so assuming the existence of the private key is sufficient.) On the other
hand, if it is an (MC-)receiving transaction tx, the reverse procedure is followed.
First, the funds are collected by tx2 from the pool address poolpk and moved into
the SC address which will be used for the upcoming remote transaction. Then tx1
moves the funds out of SC so that they can be collected by the corresponding tx
onMC. In the first case, the transaction sequence is (tx, tx1, tx2) and in the second
case the sequence is (tx2, tx1, tx). Note that, in both cases, tx and tx1 are identical,
except for the fact that tx is recorded on MC while tx1 is recorded on SC; the
latter is the effect (or pre-image, respectively) of the former.

The simple intuition behind this construction is that, in the plausible his-
tory t⃗x produced by Algorithm 51, the account poolpk is holding all the money
of the sidechain. More specifically, the balance that is maintained in the variable
balances[SC][poolpk] is identical to the pool variable maintained by theMC verifier.
This invariant is made formal in Lemma 64.

Lemma 64 (Plausible balances). Let L ∈ T ∗A,MC and t⃗x ← plausible(L). Con-
sider an execution of Algorithm 40 on t⃗x and an execution of verifierMC on L. Let
tx ∈ L. Call pooltx the value of the pool variable maintained by verifierMC prior
to processing tx in its main for loop; call balances[SC][poolpk]tx the value of the
balances[SC][poolpk] variable prior to the iteration of its main for loop which pro-
cesses the first item of plausibility-map(tx). For all tx ∈ L, the following invariant
will hold: pooltx = balances[SC][poolpk]tx.

Proof. By direct inspection of the two algorithms, observe that balances[SC][poolpk]
are updated by Algorithm 40 only when send(txa) ̸= rec(txa). The balances are
increased when send(txa) = MC (due to tx2 ∈ plausibility-map(tx) at Line 17 of
Algorithm 51) and decreased when send(txa) = SC (due to tx2 ∈ plausibility-map(tx)
at Line 22 of Algorithm 51). Exactly the same accounting is performed by verifierMC
when the respective tx is processed.
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Algorithm 51 The plausible transaction sequence generator.
1: (poolsk, poolpk)← Gen(1λ)
2: function plausible(L)
3: t⃗x← ε
4: for tx ∈ L do
5: t⃗x← t⃗x ∥ plausibility-map(tx)
6: end forreturn t⃗x
7: end function
8: function plausibility-map(tx)
9: ▷ Destructure tx into its constituents
10: (txid, lid, (send, sAcc), (rec, rAcc), v, σ)← tx
11: if send = rec then return (tx)
12: end if
13: if send =MC then
14: tx1 ← effectMC→SC(tx)
15: Construct a valid σ2 using the private key corresponding to rAcc
16: Generate a fresh txid2
17: tx2 ←

(
txid2,SC, (SC, rAcc), (SC, poolpk), v, σ2

)
return (tx, tx1, tx2)

18: end if
19: if send = SC then
20: Construct a valid σ2 using poolsk
21: Generate a fresh txid2
22: tx2 ←

(
txid2,SC, (SC, poolpk), (SC, sAcc), v, σ2

)
23: tx1 ← effect−1SC→MC(tx) return (tx2, tx1, tx)
24: end if
25: end function

We now prove the correctness of Algorithm 51 in Lemma 65.

Lemma 65 (Plausibility). For all L ∈ T ∗A,MC, if verifytxMC(L) = L then t⃗x ←
plausible(L) will satisfy t⃗x ∈ VA.

Proof. Suppose for contradiction that t⃗x ̸∈ VA and let t⃗x′ be the minimum prefix
of t⃗x such that t⃗x′ ̸∈ VA. From the validity language base property we have that
t⃗x′ ̸= ε and so it must have at least one element. Let tx ≜ t⃗x′[−1] and let txL ∈ L be
the input to plausibility-map which caused tx to be included in t⃗x in the execution of
plausible in Algorithm 51. Since Algorithm 40 processes transactions sequentially,
and by the minimality of t⃗x′, it must return false when tx is processed.

We distinguish the following cases for txL:
Case 1: Local transaction: send(txL) = rec(txL). Then tx = txL and

send(tx) = lid(tx). Since L is a fixpoint of verifytxMC, tx must (a) have a valid
signature σ, (b) not be a replay transaction, and (c) respect the Conservation Law.
As txL is a local transaction satisfying all of (a), (b) and (c), therefore t⃗x′ ∈ VA,
which is a contradiction.

Case 2: Sending transaction: send(txL) = MC and rec(txL) = SC. In
this case, let (txL, tx1, tx2) = plausibility-map(txL). If tx = txL, then tx is a sending
transaction and we can apply the same reasoning to argue that it will respect
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properties (a), (b) and (c). But those are the only violations for which Algorithm 40
can reject an sending transaction, and hence t⃗x′ ∈ VA, which is a contradiction.

If tx = tx1, then Algorithm 40 must return true. To see this, consider the cases
when Algorithm 40 returns false: (d) a replay failure in Line 23, which cannot occur
as txL has been accepted by verifytxMC and so verifytxMC must have seen txL only
once while Algorithm 40 must be seeing it for exactly the second time; or (e) a
mismatch failure in Line 23 which cannot occur as tx1 is constructed identical to
txL.

If tx = tx2 then send(tx) = rec(tx). This transaction cannot cause Algorithm 40
to return false. To see this, consider the cases when Algorithm 40 returns false:
(a) a signature failure in Line 9 cannot occur because σ2 was constructed correctly
and the signature scheme is correct; (b) a replay failure in Line 14 cannot occur
because txid2 is fresh; (c) a conservation failure in Line 18 cannot occur because
the immediately preceding transaction t⃗x′[−2] supplies sufficient balance.

Case 3: Receiving transaction: send(txL) = SC and rec(txL) = MC. In
this case, let (tx2, tx1, txL) = plausibility-map(txL). The argument for tx = txL and
tx = tx1 is as in Case 2. For the case of tx = tx2, the same argument as before
holds for a signature validity and for replay protection. It suffices to show that the
conservation law is not violated. This is established in Lemma 64 by the invariant
that pooltxL = balances[SC][poolpk]txL that holds prior to processing tx2, as it is the
first transaction of a triplet produced by plausibility-map. As verifytxMC(L) = L
then therefore pooltxL − v ≥ 0 and so balances[SC][poolpk]txL − amount ≥ 0 and
Algorithm 40 returns true.

All three cases result in a contradiction, concluding the proof.

Lemma 66 (SC failure firewall). Consider any execution of the construction of
Section 7.1.2 in which persistence holds for MC. For all slots t such that St =
{MC} we have that

merge({L∪MC[t]}) ∈ π{MC}(VA) .

Proof. From the assumption that persistence holds, there exists some MC party
P for which LP

MC[t] = L∪MC[t]. Additionally, merge({L∪MC[t]}) = L∪MC[t] due to the
partitioning property. It suffices to show that there exists some t⃗x ∈ VA such that
π{MC}(t⃗x) = LP

MC[t]. Let t⃗x ← plausible(LP
MC[t]). We have verifierMC(LP

MC[t]) =

true, so apply Lemma 65 to obtain that t⃗x ∈ VA.
To see that π{MC}(t⃗x) = LP

MC[t], note that Algorithm 51 for input L includes all
tx ∈ L in the same order as in its input. Furthermore, all tx ∈ t⃗x such that tx ̸∈ L
have lid(tx) = SC and so are excluded from the projection.

General Firewall Property

In preparation for establishing the full firewall property, we state the following
simple technical lemma.

Lemma 67 (Honest subsequence). Consider any set S of 2k consecutive slots prior
to slot t in an execution of an Ouroboros ledger L such that Ahm(L)[t] holds. Then
k + 1 slots of S are honest, except with negligible probability.

Sketch. If the adversary controlled at least k out of any 2k consecutive slots, he
could use them to produce an alternative k-blocks long chain for this interval with-
out any help from the honest parties, resulting in a violation of common prefix and
hence persistence (cf. Lemma 62).
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We are now ready to prove our key lemma, showing that our construction sat-
isfies the firewall property.

Lemma 68 (Firewall). For all PPT adversaries A, the construction of Section 7.1.2
with a secure ATMS and a collision-resistant hash function satisfies the firewall
property with respect to assumptions AMC,ASC with overwhelming probability in k.

Proof. Let A be an arbitrary PPT adversary against the firewall property, and Z
be an arbitrary environment for the execution of A. We will construct the following
PPT adversaries:

1. A1 is an adversary against ATMS.

2. A2 is a collision adversary against the hash function.

We first describe the construction of these adversaries.

The adversary A1. A1 simulates the execution of A and Z and of two pop-
ulations of maintainers for two blockchains, MC and SC, which run the protocol
Π (either the MC or the SC-maintainer part respectively) and spawns parties ac-
cording to the mandates of the environment Z as follows. For all parties that are
spawned as MC maintainers, A1 generates keys internally by invoking the Gen al-
gorithm of the ATMS scheme. For all parties that are spawned as SC maintainers,
A1 uses the oracle Ogen to produce the public keys vki.

Whenever A requests that a (block or transaction) signature in SC is created,
A1 invokes its oracle Osig to obtain the respective signature to provide to A. When
A requests that a MC signature is created, A1 uses its own generated private key
to sign by invoking the Sig algorithm of the ATMS scheme. If A requests the
corruption of a certain party P ∗, then A1 reveals P ∗’s private key to A as follows:
If P ∗ is a MC maintainer, then the secret key is directly available to A1, so it is
immediately returned. Otherwise, if P ∗ is a SC maintainer, then A1 obtains the
secret key of P ∗ by invoking the oracle Ocor.

For every time slot t of the execution, A1 inspects all pairs (PMC, PSC) of honest
parties such that PMC is a MC maintainer and PSC is a SC maintainer such that
LPMC
MC [t] = L∪MC[t] and LPSC

SC [t] = L∪SC[t] (if such parties exist). Let L1 = LPMC
MC [t] and

L2 = LPSC
SC [t]. The adversary obtains the stable portion of the honestly adopted

chain, namely C1 = CPMC [t][: −k] and the transactions included in C1, namely L′1
(note that L′1 ̸= L1 if L′1 contains certificate transactions). A1 examines whether
L = merge(L1, L2) ̸∈ VA, to deduce whether A has succeeded. Note that both the
evaluation of merge on arbitrary states and the verification of inclusion in VA are
efficiently computable and hence A1 can execute them. If A1 is not able to find such
a time slot t and parties PMC, PSC, it returns failure (in the latter part of this proof,
we will argue that all A1 failures occur with negligible probability conditioned on
the event that A is successful, unless A2 is successful).

Otherwise it obtains the minimum t for which this holds and the L for this t.
Because of the base property of the validity language, we have that ϵ ∈ VA and
therefore L ̸= ϵ. Let L∗ be the minimum prefix of L such that L∗ ̸∈ VA and let
tx = L∗[−1]. If tx has send(tx) ̸= SC or lid(tx) ̸= MC, then A1 returns failure.
Now therefore send(tx) = SC and lid(tx) = MC (and so tx ∈ L1). Hence, tx
references a certain certificate transaction, say tx′. Due to the algorithm executed
by MC maintainers for validation, we will have that tx′ ∈ L′1{: tx}.
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Let t⃗x∗ be the subsequence of L′1 containing all certificate transactions up to and
including tx′. We will argue that there must exist some ATMS forgery among one
of the certificate transactions in t⃗x∗. A1 looks at every transaction sc_certj ∈ t⃗x∗

(and note that it will correspond to a unique epoch ej). sc_certj contains a message
m = (j, ⟨pendingj⟩, avkj) and a signature σj . A1 extracts the epoch ej in which
sc_certj was confirmed in C1 (and note that we must have j > 0). A1 collects
the public keys elected for the last 2k slots of epoch ej−1 according to the view of
PSC into a set keysj−1 and similarly for keysj . A1 collects the pending cross-chain
transactions of ej−1 according to the view of PSC into pending′j , and creates the
respective Merkle-tree commitment

〈
pending′j

〉
. A1 checks whether the following

certificate violation condition holds:

AVer(m, avkj−1, σj) and

ACheck(keysj−1, avk
j−1) and(

¬ACheck(keysj , avkj) ∨ ⟨pendingj⟩ ̸= ⟨pending
′
j⟩
) (7.1)

where avkj−1 is extracted from sc_certj−1 according to the view of PSC, unless
j = 1 in which case avk0 is known. If the condition (7.1) holds for no j then A1

returns failure, otherwise it denotes by j∗ the minimum j for which (7.1) holds and
outputs the tuple (m,σj∗ , avk

j∗−1, keysj
∗−1).

The adversary A2. Like A1, A2 simulates the execution of A including two
populations of maintainers and spawns parties according to the mandates of the
environment Z. For all these parties, A2 generates keys internally. WhenA requests
that a transaction is created, A2 provides the signature with its respective private
key. If A requests the corruption of a certain party, say P ∗, then A2 provides the
respective private key to A.

For every time slot t of the execution, A2 inspects all pairs of honest parties such
that PMC is a MC maintainer and PSC is a SC maintainer such that LPMC

MC [t] =

L∪MC[t] and LPSC
SC [t] = L∪SC[t] and obtains the variables L1, L2,C1, L′1 as before. A2

examines whether L = merge(L1, L2) ̸∈ VA, to deduce whether A has succeeded. If
A2 is not able to find such a time slot t and parties PMC, PSC, it returns failure. Let
tx be as in A1. If send(tx) ̸= SC or lid(tx) ̸= MC, then A2 returns failure. Then
tx references a certain certificate transaction sc_certj = (j, ⟨pendingj⟩, avkj , σj)
and uses a Merkle tree proof π which proves the inclusion of tx in pendingj . If
sc_certj ̸∈ L′1, then A2 returns failure. When sc_certj was accepted by PSC,
pendingj included a set of transactions t⃗x in the view of PSC. If tx ∈ t⃗x, then A2

returns failure. Otherwise, the Merkle tree ⟨pendingj⟩ was constructed from t⃗x, but
a proof-of-inclusion π for tx ̸∈ t⃗x was created. From this proof, A2 extracts a hash
collision and returns it.

Probability analysis. Define the following events:

• sc-forge[t]: A is successful at slot t, i.e., πA (merge({L∪i [t] : i ∈ St})) ̸∈ πSt(VA).

• atms-forge: A1 finds an index j∗ for which the condition (7.1) occurs.

• hash-collision: A2 finds a hash function collision.
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Note that ledger states in the protocol only contain A-transactions, hence πA is the
identity function and sc-forge[t] is equivalent to merge ({L∪i [t] : i ∈ St}) ̸∈ πSt(VA).
We will now show that for every t, the probability Pr[sc-forge[t]] is negligible. We
distinguish two cases:

Case 1: St = {MC,SC}. In this case Persistence holds for bothMC and SC,
and πSt is the identity function. We deal with this case in two successive claims
(both implicitly conditioning on being in Case 1). First we show that, if sc-forge[t]
occurs, then one of atms-forge, hash-collision occurs. Therefore applying a union
bound, we will have that:

Pr[sc-forge[t]] ≤ Pr[atms-forge] + Pr[hash-collision] .

Second, we show that Pr[atms-forge] is negligible (and the negligibility of Pr[hash--
collision] follows from our assumption that the hash function is collision resistant).

Claim 1a: sc-forge[t]⇒ atms-forge ∨ hash-collision.
Because persistence holds in bothMC and SC, we know that there exist two parties
PMC, PSC such that at slot t we have that LPMC

MC [t] = L∪MC[t] and L
PSC
SC [t] = L∪SC[t],

respectively. Therefore sc-forge[t] implies

merge({LPMC
MC [t],LPSC

SC [t]}) ̸∈ VA .

Let tx, tx′ be as in the definition of A1. By Lemma 63 and using MC and SC
persistence, tx will exist and be anMC-receiving transaction. Hence, send(tx) = SC
and rec(tx) = lid(tx) = MC. Therefore, tx′ will also exist. If A1 finds the index j∗

for which (7.1) is satisfied, then atms-forge has occured and the claim is established,
so let us assume otherwise. Hence, for each certificate sc_certj containing a message
m = (j, ⟨pendingj⟩, avkj), it holds that(

AVer(m, avkj−1, σj) ∧ ACheck(keysj−1, avkj−1)
)

⇒(
ACheck(keysj , avk

j) ∧ ⟨pendingj⟩ = ⟨pending
′
j⟩
)
.

(7.2)

Therefore, we have a chain of certificates, each of which is signed with a valid key
avkj−1 and attests to the validity of the next key avkj . For all of these certificates,
AVer(m, avkj−1, σj) holds, as it has been verified by PMC. Furthermore, by an
induction argument (where the base case comes from the construction of avk0 and
the induction step follows from (7.2)) we have ACheck(keysj−1, avkj−1) as well.

As tx′ is a certificate transaction which appears last in the above chain (with
some index sc_certk), the above implication also holds for tx′, and so does its
premise AVer(m, avkk−1, σk) ∧ ACheck(keysk−1, avkk−1). Therefore, the conclusion
of the implication ⟨pendingk⟩ = ⟨pending

′
k⟩ holds. However, the sending transaction

corresponding to tx has been proven to belong to the Merkle Tree ⟨pendingk⟩ (as
verified by PMC), but does not belong to pending′k (by the selection of tx). This
constitutes a Merkle Tree collision, which translates to a hash collision. The con-
struction of A2 outputs exactly this collision, and in this case we deduce that A2

is successful and hash-collision follows.
Claim 1b: Pr[atms-forge] is negligible.

Suppose that atms-forge occurs. We will argue that, in this case, A1 will have
computed an ATMS forgery, which is a negligible event by the assumption that the
used ATMS is secure.
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From the assumption that atms-forge has occurred, at epoch ej we have that
AVer(m, avkj−1, σj) and ACheck(keysj−1, avkj−1), but ¬ACheck(keysj , avkj) or ⟨pendingj⟩
̸= ⟨pending′j⟩. From Lemma 67 and using Ahm(SC)[t], we deduce that in the last 2k
slots of epoch ej−1, at least k + 1 must be honest. Since ej is the earliest epoch in
which this occurs, this means that keysj−1 corresponds to the last 2k slot leaders
of epoch ej−1, and all honest parties agree on the same 2k slot leaders. Hence, in
the ATMS game, the number of keys in keys corrupted by the adversary through
the use of the oracle Ocor(·) is less than k. Furthermore, since ¬ACheck(keysj , avkj)
or ⟨pendingj⟩ ̸= ⟨pending

′
j⟩, the message m contains either an invalid future ag-

gregate key, an invalid Merkle Tree root of outgoing cross-chain transactions, or
both. Hence, no honest party will sign the message m for this epoch and therefore
|Qsig[m]| = 0. Hence q < k, and A1 wins the ATMS security game.

Case 2: St ̸= {MC,SC}. If MC ̸∈ St then, since AMC[t] ⇒ ASC[t], we
have St = ∅ and ¬sc-forge[t], as ϵ ∈ VA by the base property. It remains to
consider the case St = {MC}. Using MC persistence, by Lemma 66 we obtain
merge({L∪MC[t]}) ∈ π{MC}(VA), and hence sc-forge[t] did not occur.

From the two above cases, we conclude that for every t, Pr[sc-forge[t]] ≤ negl.
As the total number of slots is polynomial, we have shown that with overwhelm-
ing probability, we have that for all slots t and for all A ∈

⋃
i∈St Assets(Li),

πA (merge ({L∪i [t] : i ∈ St})) ∈ πSt(VA), concluding the proof.

Lemmas 62 and 68 together directly imply the following theorem.

Theorem 69 (Pegging Security). In the synchronous setting with 2R-semiadaptive
corruptions, the construction of Section 7.1.2 using a secure ATMS and a collision
resistant hash function is pegging secure with liveness parameter u = 2k with respect
to assumptions AMC and ASC defined above, and merge, effect and VA defined in
Section 7.1.2.

7.1.4 The Diffuse Functionality
In the model described in Section 3.1 we employ the “Delayed Diffuse” functionality
of [45], which we now describe in detail for completeness. The functionality is para-
meterized by ∆ ∈ N and denoted DDiffuse∆. It keeps rounds, executing one round
per slot. DDiffuse∆ interacts with the environment Z, stakeholders U1, . . . , Un and
adversary A, working as follows for each round: DDiffuse∆ maintains an incoming
string for each party Pi that participates. A party, if activated, can fetch the
contents of its incoming string, hence it behaves as a mailbox. Furthermore, parties
can give an instruction to the functionality to diffuse a message. Activated parties
can diffuse once per round.

When the adversary A is activated, it can: (a) read all inboxes and all diffuse
requests and deliver messages to the inboxes in any order; (b) for any message m
obtained via a diffuse request and any party Pi, A may move m into a special string
delayedi instead of the inbox of Pi. A can decide this individually for each message
and each party; (c) for any party Pi, A can move any message from the string
delayedi to the inbox of Pi.

At the end of each round, the functionality ensures that every message that was
either (a) diffused in this round and not put to the string delayedi or (b) removed
from the string delayedi in this round is delivered to the inbox of party Pi. If
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a message currently present in delayedi was originally diffused ∆ slots ago, the
functionality removes it from delayedi and appends it to the inbox of party Pi.

Upon receiving (Create, U, C) from the environment, the functionality spawns a
new stakeholder with chain C as its initial local chain (as in [89, 45]).

7.1.5 Adaptation to Other Proof-of-Stake Blockchains
Our construction can be adapted to work with other provably secure proof-of-stake
blockchains: Ouroboros Praos [45], Ouroboros Genesis [13], Snow White [22], and
Algorand [113]. Here we assume some familiarity with the considered protocols and
refer the interested reader to the original papers for details.

Ouroboros Praos and Ouroboros Genesis

These protocols [45, 13] are strongly related and differ from each other only in the
chain-selection rule they use, which is irrelevant for our discussion here, hence we
consider both of the protocols simultaneously. Ouroboros Praos was shown secure
in the semi-synchronous model with fully adaptive corruptions (cf. Section 3.1) and
this result extends to Ouroboros Genesis. Despite sharing the basic structure with
Ouroboros, they differ in several significant points which we now outline.

The slot leaders are elected differently: Namely, each party for each slot evalu-
ates a verifiable random function (VRF, [48]) using the secret key associated with
their stake, and providing as inputs to the VRF both the slot index and the epoch
randomness. If the VRF output is below a certain threshold that depends on the
party’s stake, then the party is an eligible slot leader for that slot, with the same
consequences as in Ouroboros. Each leader then includes into the block it creates
the VRF output and a proof of its validity to certify her eligibility to act as slot
leader. The probability of becoming a slot leader is roughly proportional to the
amount of stake the party controls, however now it is independent for each slot
and each party, as it is evaluated locally by each stakeholder for herself. This local
nature of the leader election implies that there will inevitably be some slots with
no, or several, slot leaders. In each epoch j, the stake distribution used in Praos
and Genesis for slot leader election corresponds to the distribution recorded in the
ledger up to the last block of epoch j − 2. Additionally, the epoch randomness ηj
for epoch j is derived as a hash of additional VRF-values included into blocks from
the first two thirds of epoch j − 1 for this purpose by the respective slot leaders.
Finally, the protocols use key-evolving signatures for block signing, and in each slot
the honest parties are mandated to update their private key, contributing to their
resilience to adaptive corruptions.

Ouroboros Praos was shown [45] to achieve persistence and liveness under weaker
assumptions than Ouroboros, namely:

1. ∆-semi-synchronous communication (where ∆ affects the security bounds but
is unknown to the protocol);

2. the majority of the stake is always controlled by honest parties;

3. the stake shift per epoch is limited.

In particular, Ouroboros Praos is secure in face of fully adaptive corruptions without
any corruption delay. Ouroboros Genesis provides the same guarantees as Praos,
as well as several other features that will not be relevant for our present discusion.
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Construction of Pegged Ledgers. The main difference compared to our treat-
ment of Ouroboros would be in the construction of the sidechain certificate (cf.
Section 7.1.2). The need for a modification is caused by the private, local leader
selection using VRFs in these protocols, which makes it impossible to identify the
set of slot leaders for the suffix of an epoch at the beginning of this epoch, as done
for Ouroboros.

The sidechain certificate included in MC at the beginning of epoch j would
hence contain the following, for parameters Q and T specified below:

1. the epoch index;

2. a Merkle commitment to the list of withdrawals as in the case of Ouroboros;

3. a Merkle commitment to the SC stake distribution SDj ;

4. a list of Q public keys;

5. Q inclusion proofs (with respect to SDj−1 contained in the previous certificate)
and Q VRF-proofs certifying that these Q keys belong to slot leaders of Q
out of the last T slots in epoch j − 1;

6. Q signatures from the above Q public keys on the above; these can be replaced
by a single aggregate signature to save space on MC.

The parametersQ and T have to be chosen in such a way that with overwhelming
probability, there will be a chain growth of at least Q blocks during the last T slots
of epoch j−1, but the adversary controls Q slots in this period only with negligible
probability (and hence at least one of the signatures will have to come from an
honest slot leader). The existence of such constants for T = Θ(k) was shown
in [13].

While the above sidechain certificate is larger (and hence takes more space on
MC) than the one we propose for Ouroboros, a switch to Ouroboros Praos or
Genesis would also bring several advantages. First off, both constructions would
give us security in the semi-synchronous model with fully adaptive corruptions (as
shown in [45, 13]), and the use of Ouroboros Genesis would allow newly joining
players to bootstrap from the mainchain genesis block only—without the need for
a trusted checkpoint—as discussed extensively in [13].

Snow White

The high-level structure of Snow White execution is similar to the protocols we
have already discussed: it contains epochs, committees that are sampled for each
epoch based on the stake distribution recorded in the blockchain prior to that epoch,
and randomness used for this sampling produced by hashing special nonce values
included in previous blocks. Hence, our construction can be adapted to work with
Snow White-based blockchains in a straightforward manner.

Algorand

Algorand does not aim for the so-called eventual consensus. Instead it runs a full
Byzantine Agreement protocol for each block before moving to the next block, hence
blocks are immediately finalized. Consider a setting with MC and SC both run-
ning Algorand. The main difficulty to address when constructing pegged ledgers
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is the continuous authentication of the sidechain certificate constructed by SC-
maintainers for MC (other aspects, such as deposits from MC to SC work anal-
ogously to what we described above). As Algorand does not have epochs, and
creating and processing a sidechain certificate for each block is overly demanding,
a natural choice is to introduce a parameter R and execute this process only once
every R blocks. Namely, every R blocks, the SC-maintainers produce a certificate
that the MC-maintainers insert into the mainchain. This certificate most impor-
tantly contains:

1. a Merkle commitment to the list of withdrawals in the most recent R-block
period;

2. a Merkle commitment to the full, most recent stake distribution SDj on SC;

3. a sufficient number of signatures from a separate committee certifying the
above information, together with proofs justifying the membership of the sig-
nature’s creators in the committee.

This additional committee is sampled from SDj−1 (the stake distribution committed
to in the previous sidechain certificate) via Algorand’s private sortition mechanism
such that the expected size of the committee is large enough to ensure honest
supermajority (required for Algorand’s security) translates into a strong honest
majority within the committee. Note that the sortition mechanism also allows for a
succinct proof of membership in the committee. The members of the committee then
insert their individual signatures (signing the first two items in the certificate above)
into the SC blockchain during the period of R blocks preceding the construction
of the certificate. All the remaining mechanics of the pegged ledgers are a direct
analogy of our construction above.

7.2 Bidirectional Sidechains with Work Sources

7.2.1 Sidechains as Smart Contracts
In this section, we introduce the first trustless construction for proof-of-work side-
chains. We describe how to build generic communication between blockchains. As
one application, we give the construction of a two-way pegged asset which can be
moved from one blockchain to another while retaining its nature. We provide a
high-level construction in Solidity. Our construction works across a broad range
of blockchains requiring only two underlying properties. First, that the source
blockchain is a proof-of-work blockchain supporting NIPoPoWs. Second, that the
target blockchain is able to validate such proofs through smart contracts such as,
e.g., Ethereum or Ethereum Classic. We give a formal proof of security of our
construction via reduction to NIPoPoW security under the assumption that the
interoperating blockchains are secure individually. To our knowledge, we are the
first to provide such a construction in full and prove its security.

7.2.2 Smart Contract Workflow
We wish to transfer assets from one blockchain to another and then back. When
assets can be transferred from one blockchain to another but not back, we call it a
one-way peg. If assets can also be moved back, we call it a two-way peg. In each
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individual transfer of an asset, we have a particular source blockchain, from which
the asset is moved, and a particular target blockchain, to which the asset is moved.
In a sidechain setting of two blockchains that are two-way pegged, both blockchains
can function as a source and a target blockchain for different transfers.

Figure 7.3: Basic information transfer between two blockchains
k1

k2While the motivation for the construction is to be able to move assets from
one blockchain to another, we generalize the notion of sidechains from this strict
setting. In general, we would like the target blockchain to be able to react to any
event that occurs on the source blockchain. Such events can be the fact that a
transaction with a particular txid took place, that a certain account was paid a
certain amount of money, or that a particular smart contract was instantiated. Our
sidechain construction allows the target blockchain to react to events that took place
on the source blockchain. This reaction can be implemented in its target blockchain
smart contracts. We describe our construction in pseudocode similar to Ethereum’
Solidity. In Solidity, events can be fired arbitrarily from within a smart contract
and do not have a semantic interpretation. In this setting, events are defined by
Solidity using the event type and have an event name, a contract address which fired
them, as well as certain parameter values. A contract can elect to fire an event with
any name and any parameters of its choice by invoking the emit command.

A high-level overview of cross-chain event transmission is shown in Figure 7.3.
The process is as follows. First, an event is fired in the source blockchain, shown
at the top. This could be any event that can be emitted using Ethereum’s emit
command. This event firing is caused by a certain transaction which is included
at a certain block, indicated in black at the top. This block is then buried under
k1 subsequent blocks within the source blockchain, where the k1 parameter is a
security parameter of the scheme depending on the specific parameters of the source
blockchain [60]. As soon as this confirmation occurs, the target blockchain can react
to the event, shown at the bottom. This reaction occurs in a transaction which is
included in a block within the target blockchain, illustrated in white. As usual,
the block needs to be confirmed by waiting for k2 blocks to be mined on top of
it. It is possible that k1 ̸= k2 because of different blockchain parameters such as
a difference in block generation time or network synchrony. In this figure, arrows
between blocks of the same blockchain indicate authenticated ancestry. The arrow
between the two blockchains indicates the data transfer needed for the event.

Using this basic functionality of event information exchange between block-
chains, we can construct two-way pegged sidechains. In such a construction, an
asset that exists on one blockchain will gain the ability to be moved to a different
blockchain and back. We will use the example of moving ether, the native asset of
the Ethereum blockchain, from the Ethereum blockchain into the Ethereum Classic
blockchain and back. Such an action is different from exchanging ether (ETH), the
native token of the Ethereum blockchain, with ether classic (ETC), the native token
of the Ethereum Classic blockchain. Instead, the asset retains its nature; it main-
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tains its price and its ability to be used for the same purposes, while being governed
by the rules of the new blockchain, such as different performance, fees, features, or
security guarantees. Furthermore, no counterparty or market is required to perform
the exchange; the transfer is something a party can do on its own.

7.2.3 Smart Contract Construction
Cross-chain certificates

For our construction, we use a primitive called Non-Interactive Proofs of Proof-
of-Work recently introduced in [87]. Non-Interactive Proofs of Proofs-of-Work are
cryptographic protocols which implement a prover and a verifier. The prover is a full
node on the source blockchain. The verifier does not have access to that blockchain,
but knows the source genesis block G. The prover wants to convince the verifier
that an event took place in the source blockchain; for instance, a smart contract
method was called with certain parameters or that a payment was made into a
particular address. Whether such an event took place can easily be determined
if one inspects the whole blockchain. However, the prover wishes to convince the
verifier by only sending a succinct proof, a short string which does not grow linearly
with the size of the source blockchain, but, rather, polylogarithmically. The verifier
must not be fooled by adversarial provers who provide incorrect proofs claiming
that an event happened while in fact it didn’t, or that it didn’t while in fact it
did. These adversaries can also mine blocks, but the honest parties are assumed
to control the majority of computational power on both the source and the target
blockchain networks. To withstand such attacks, the verifier accepts multiple proofs,
at least one of which is assumed to have been honestly generated (this assumption
is necessary in standard blockchain protocols in general [67, 153]). Comparing these
proofs against each other, the verifier extracts a reliable truth value corresponding
to the same value it would deduce if it were to be running a full node on the
blockchain itself. This property is the security of NIPoPoWs proven in [87].

The NIPoPoWs construction talks about predicates evaluated on blockchains,
but we are interested in events. We can translate from events to predicates provable
with NIPoPoWs. Specifically, given a genesis block G, a smart contract address addr,
an event name Event, and a series of event parameter values (param1, param2, · · · ,
paramn), the predicate e we wish to check for truth is the following: Has the event
named Event been fired with parameters (param1, param2, · · · , paramn) by the smart
contract residing in address addr on the blockchain with genesis block G at least
k blocks ago? This predicate is (1) monotonic, meaning that it starts with the
value false and, if it ever becomes true, it cannot ever change its value back as the
blockchain grows; (2) infix-sensitive, meaning that its truth value can be deduced
by inspecting a polylogarithmically-bound number of blocks on the blockchain (in
our case one block, within which the event firing was confirmed); and (3) stable,
meaning that, if one party deduces that its value is true, then soon enough all parties
will deduce that its value is true. This last property stems from the requirement
that the event be buried under k blocks ensuring a blockchain reorganization up to
k blocks ago cannot affect the predicate’s value.

In order to determine whether an event took place, the NIPoPoW verifier func-
tion verifyG,ek,m(P) accepts the event description in the form of a blockchain predicate
e, which we gave above, the genesis block of the remote chain G, as well as two se-
curity parameters k and m. These security parameters can be constants specified
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when the sidechain system is created (concrete values for these are given in [87]).
Subsequently, the NIPoPoW verifier accepts a set of proofs P = {π1, π2, · · · , πn}
which it compares and extracts a truth value for the predicate: Whether the event
has taken place in the remote blockchain or not. As long as at least one honestly
generated proof πi is provided, the verifier’s security ensures that the output will
correspond to whether the event actually occurred.

Our protocol works as follows. Whenever an event of interest occurs on the
source blockchain, the occurence of this event is observed by a source blockchain
honest node, who generates a NIPoPoW about it. The target blockchain contains a
smart contract with a method to accept and verify the veracity of this proof. The
node can then submit the proof to the smart contract by broadcasting a transaction
on the target blockchain. As soon as the proof is validated by the smart contract,
the target blockchain can elect to react to the event as desired.
Adoption considerations. Our construction has certain prerequisites for both
the source and the target blockchain before it can be adopted. In the case of
bidirectionally connected blockchains, both of them must satisfy the source and the
target blockchain prerequisites.

• The source blockchain needs to support proofs about it, which requires
augmenting it with an interlink vector, the details of which can be found
in [83]. This interlink vector can be added to a blockchain using a user-
activated velvet fork [87, 158], which is performed without miner awareness
and does not require a hard or soft fork. However, only events occuring after
the velvet fork can be proven. New blockchains can adopt this from genesis.

• The target blockchain needs to be able to run the above verify function.
This function can be programmed in a Turing-complete language such as
Solidity. If the source blockchain proof-of-work hash function is available as
an opcode or pre-compiled smart contract within the target blockchain’s VM
the way, e.g., Bitcoin’s SHA256 hash function is available in Solidity, the
implementation can be more gas-efficient.

Blockchain agnosticism. We underline the remarkable property that miners
and full nodes of the target blockchain do not need to be aware of the source block-
chain at all. To them, all information about the source blockchain is simply a string
which is passed as a parameter to a smart contract and can remain agnostic to its
semantics as a proof. Additionally, miners and full nodes of the source blockchain
do not need to be aware of the target blockchain. Only the parties interested in
facilitating cross-chain events must be aware of both. Those untrusted facilitators
need to maintain an SPV node on the source blockchain about which they generate
their NIPoPoW. To broadcast their proof on the target blockchain, they connect to
target blockchain nodes and send the transaction containing the NIPoPoW. Block-
chain agnosticism allows users to initiate cross-chain relationships between different
blockchains dynamically, as long as the blockchains in question satisfy the above
prerequisites.

Cross-chain events

We give our crosschain construction in Algorithm 52. Initially, our communication
will be unidirectional. In the next section, we use two unidirectional channels
to establish bidirectional communication. This smart contract runs on the target
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blockchain and informs it about events that took place in the source blockchain. It is
parameterized by three parameters: k andm are the underlying security parameters
of the NIPoPoW protocol. The value z is a collateral parameter, denominated in
ether (or the native currency of the blockchain in which the execution takes place)
and is used to incentivize honest participants to intervene in cases of false claims.
The contract utilizes the NIPoPoW verify function parameterized by the event e,
the remote genesis block G and the security parameters k and m. We do not give
an explicit implementation of verify, as it can be implemented in a straightforward
manner by translating the pseudocode listing of [87]. For our purposes, it suffices to
treat it as a black box which, given a set of proofs, at least one of which is honestly
generated, returns the truth value of the respective predicate.
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Algorithm 52 The smart contract skeleton that enables checking cross-chain proofs
about events.
1: contract crosschaink,m,z

2: finalized-events← ∅; events← ∅
3: internal function initialize(Gremote)
4: G ← Gremote
5: end function
6: payable function submit-event-proof(π, e)
7: if msg.value < z then ▷ Ensure sufficient collateral
8: return ⊥
9: end if
10: if events[e] = ⊥ ∧ verifye,Gk,m(π) then
11: events[e]← {expire: block.number+ k, proof: π, author: msg.sender}
12: end if
13: end function
14: function finalize-event(e)
15: if events[e] = ⊥ ∨ block.number < events[e].expire then
16: return ⊥
17: end if
18: finalized-events← finalized-events ∪ {e}
19: author← events[e].author
20: events[e]← ⊥
21: author.send(z) ▷ Return collateral
22: end function
23: function submit-contesting-proof(π∗, e)
24: if events[e] = ⊥ ∨ block.number ≥ events[e].expire then
25: return ⊥
26: end if
27: if ¬verifye,Gk,m(events[e].proof, π∗) then ▷ Original proof was fraudulent
28: events[e]← ⊥
29: msg.sender.send(z) ▷ Pay collateral to contester
30: end if
31: end function
32: function event-exists(e)
33: return e ∈ finalized-events
34: end function
35: end contract

The contract allows detecting remote blockchain events and can be inherited
by other contracts that wish to adopt its functionality. It works as follows. First,
the initialize method is called exactly once to configure the contract, passing the
hash of the genesis block of the remote chain which this contract will handle. This
method is internal and can only be called by the contract inheriting from it. Users
of the contract can check it has been configured with the correct genesis block
prior to using it. We note that, while our algorithm does not reflect this to keep
complexity low, it is possible to have a contract interact with multiple remote chains
by extending it to include multiple geneses.

The lifecycle of an event submission is illustrated in Figure 7.4. When an event
has taken place in the source blockchain, any source blockchain SPV node, the
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author, can inform the crosschain contract about this fact by generating a NIPoPoW
π claiming that the event took place based on their current view of the source
blockchain. This proof can then be submitted to the target blockchain by calling
the submit-event-proof function and passing it the proof π and the event predicate e.
The submission is accompanied by a collateral payment z. If the author is honest,
this collateral will be returned to her later. The submit-event-proof function runs
the NIPoPoW verify algorithm to check that the proof π is well-formed and that it
claims that the predicate is true. It then stores the proof for later use. It also stores
the address of the author and an expiration block number.

Figure 7.4: A sequence diagram showing the actions of the untrusted SPV node
when communicating with both blockchain networks and the lifecycle of an event
submission
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Upon submission of a proof to the submit-event-proof function, the event is
tentatively accepted for a contestation period of k blocks, during which any other
party, the contester, can provide a counter-proof showing that the original proof
was fraudulent. The contester can call the submit-contesting-proof function passing
it the contesting proof π∗ and the event predicate e. The function runs the NI-
PoPoW verify algorithm to compare the original proof events[e].proof against the
contesting proof π∗. If the verification algorithm concludes that the original proof
was fraudulent, the tentatively accepted event is abandoned and the collateral is
paid to the contester.

Otherwise, when the contestation period has expired without any valid contes-
tations, the author can call the finalize-event function. This function changes the
acceptance of the event from tentative to permanent by including it in the finalized-
events set and returns the collateral to the author. Finally, the event-exists function
can be used by the inheriting contract to check if an event has been permanently
accepted. The target blockchain state during this execution is shown in Figure 7.5.
The source blockchain’s event included in the black box, upon sufficient confirma-
tion by k1 blocks (not shown), is transmitted to the target blockchain at the bottom.
The target blockchain includes the event tentatively in block 1 until a contestation
period of k2 has passed; the event is included permanently in block 2; subsequently,
permanent inclusion needs to be confirmed with k2 further blocks.
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Figure 7.5: The target blockchain state during event submission
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Two-way pegged sidechains

Having created the generic crosschain contract, we now build two-way pegged side-
chains on top. For concreteness, we use the example of transferring ether (ETH), the
native currency of the Ethereum blockchain, to the Ethereum Classic blockchain,
and back. We note that this example is arbitrary and for illustration. Our construc-
tion can be used between any work-based blockchains satisfying the prerequisites
detailed above.

When ether is moved to the Ethereum Classic blockchain, it will be represented
as an ERC20 token6 within Ethereum Classic. Let this custom token be called
ETH20. The asset retains its nature as it moves from one blockchain to another
if it is always possible to move ETH into ETH20 and back at a one-to-one rate.
The economic reason is that the price of ETH and ETH20 on the market will
necessarily be the same. If the price of ETH were to ever be significantly above
the price of ETH20 in the market, then a rational participant would exchange their
ETH20 for ETH using sidechains and sell their ETH on the market instead, and
vice versa. There can be a small discrepancy in the two prices which stems from
two different factors: First, the fees needed for a cross-chain transfer; and second,
the temporary market fluctuations that can occur during the limited time needed
to perform the cross chain transfer (k1+2k2). If we assume the price fluctuation (of
ETH20 denominated in ETH) per unit of time is bounded, then the market price
difference between ETH and ETH20 at any moment in time can be bounded by the
sum of these two factors.

The sidechain smart contracts are presented in Algorithm 53. These smart
contracts both extend the crosschain smart contract of Algorithm 52. Furthermore,
sidechain2 also inherits basic ERC20 functionality which allows token owners to
transfer the token [138]. The sidechain1 contract will be instantiated on Ethereum,
while the sidechain2 contract will be instantiated on Ethereum Classic. Suppose the
genesis block hash of Ethereum is G1 and of Ethereum Classic is G2. We will use
the genesis block hash of each blockchain as its unique identifier.

The two smart contracts both contain an initialize method which accepts the
hash of the remote blockchain as well as the address of the remote smart contract
it will interface with. Note that, while the two genesis hashes can be hard-coded
into the respective smart contract code itself, the remote contract address cannot
be built-in as a constant into the smart contract, but must be later specified by
calling the initialize function. The reason is that, if sidechain1 were to be created
on G1, it would require the address of sidechain2 to exist prior to its creation, and
vice versa in a circular dependency. Therefore, the two contracts must first be
created on their respective blockchain to obtain addresses, and then their initialize
methods can be called to inform each contract about the address of the other.

6The ERC20 standard [150] defines an interface implementable by smart contracts that enables
holding and transferring custom fungible tokens such as ICO tokens.
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Specifically, first the contract sidechain1 is created on G1 to obtain its instance
address which we also denote sidechain1. Then the second contract, sidechain2, is
created on G2 to obtain its address sidechain2. Subsequently, the initialize function
of sidechain1 is called, passing it G2 and the address sidechain2. Finally, initialize is
called on sidechain2, passing it G1 and the address sidechain1. These initialization
parameters are stored by the respective smart contracts for future use. As the
crosschain contract requires, the initialize method can only be called once. Any user
wishing to utilize this sidechain is expected to validate that the contracts have been
set up correctly and that initialize has been called with the appropriate parameters.
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Algorithm 53 An asset transferring contract between G1 and G2
1: contract sidechain1 extends crosschaink,m,z

2: initialized← false; ctr← 0; claimed-events← ∅
3: function initialize(G2, sidechain2)
4: if ¬initialized then
5: ▷ Initialize with the remote chain genesis block
6: crosschain.initialize(G2)
7: this.sidechain2 ← sidechain2; initialized← true
8: end if
9: end function
10: payable function deposit(target)
11: ▷ Emit an event to be picked up by remote contract
12: emit Deposited1(target, msg.value, ctr++)
13: end function
14: function withdraw(amount, target, ctr)
15: ▷ Validate that event took place on remote chain
16: e← (sidechain2,Deposited2, (amount, target, ctr))
17: if e ∈ claimed-events ∨ ¬event-exists(e) then
18: return ⊥
19: end if
20: claimed-events← claimed-events ∪ {e}
21: target.send(amount)
22: end function
23: end contract
24: contract sidechain2 extends crosschaink,m,z; ERC20
25: mapping(address ⇒ int) balances
26: initialized← false; ctr← 0; claimed-events← ∅
27: function initialize(G1, sidechain1)
28: if ¬initialized then
29: crosschain.initialize(G1)
30: this.sidechain1 ← sidechain1; initialized← true
31: end if
32: end function
33: function deposit(target, amount)
34: if balances[msg.sender] < amount then
35: return ⊥
36: end if
37: balances[msg.sender] −= amount ▷ Charge account of sender
38: emit Deposited2(target, amount, ctr++)
39: end function
40: function withdraw(amount, target, ctr)
41: e← (sidechain1,Deposited1, (amount, target, ctr))
42: if e ∈ claimed-events ∨ ¬event-exists(e) then
43: return ⊥
44: end if
45: claimed-events← claimed-events ∪ {e}
46: balances[target] += amount ▷ Credit target account
47: end function
48: end contract
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sidechain1 contains a deposit function which is payable in the native asset of
Ethereum, ETH. When a user pays ETH into the deposit function, the funds are held
by the smart contract and can later be used to pay parties who wish to withdraw, an
operation performed by calling the withdraw function. sidechain2 contains similar
deposit and withdraw functions which, however, do not pay in the native currency of
Ethereum Classic, but instead maintain a balance mapping akin to a typical ERC20
implementation. The balance is updated when a user deposits or withdraws.

Moving funds from the Ethereum blockchain into the Ethereum Classic block-
chain works as follows. First, the user pays with ETH to call the deposit function of
sidechain1 which resides on G1, passing the target parameter which indicates their
address in the Ethereum Classic blockchain that they wish to receive the money into.
This call emits an event, Deposited1 which contains the necessary data: the target,
the amount paid, as well as a nonce ctr to allow for future payments of the same
amount to the same target. When the event has been emitted and buried under k1
blocks within the Ethereum blockchain, the user produces an Ethereum NIPoPoW
π1 about the predicate e1 which claims that the event Deposited1 has been emitted
in blockchain G1 with the particular parameters by the contract residing at address
sidechain1.

Subsequently, the user calls the submit-event-proof function of sidechain2 (which
is inherited from the crosschain contract), passing the NIPoPoW π1 and the event
predicate e1 and paying collateral z, which registers e1 on sidechain2 as tentative.
Because the user is honest, no adversary can produce a π∗1 which disproves their
claim during the dispute period, and therefore the user waits for k2 blocks for the
contestation period to expire without any successful contestations. She then calls
the finalize-event function for e1 and receives back the collateral z, marking the
event permanent. Finally, she calls the function withdraw of sidechain2, passing
it the same parameters that e1 was issued with. The withdraw function checks
that e1 exists using the event-exists method, which will return true. The user is
then credited with amount in their ETH20 balance stored in balances[target]. This
increment in balance creates brand new ETH20 tokens. The withdraw function also
stores the signature of the event parameters that have been spent to avoid replay
attacks, which is not shown here for algorithm brevity.

The user can then transfer their ETH20 tokens by utilizing the functionality
inherited from the ERC20 contract. When some (not necessarily the same) user is
ready to move some (not necessarily the same) amount of ETH20 from the Ethereum
Classic blockchain back into ETH on the Ethereum blockchain, they follow the
reverse procedure: They call the withdraw function of sidechain2 which ensures their
ERC20 balance is sufficient, deduces the requested amount, and fires an event e2 as
before. At this point, these particular ETH20 tokens are destroyed by the balance
deduction. Once e2 is confirmed in G2, the user produces the NIPoPoW π2 about
e2 which claims a payment was made within G2. That proof is then submitted to
sidechain1 by calling the submit-event-proof and finalize-event functions as before.
Last, the user calls the withdraw function of sidechain1, which uses the event-exists
function which will return true, finally paying back the user the respective amount
of ETH. Because the only way to create ETH20 tokens in sidechain2 is by depositing
ETH into sidechain1, there will always exist a sufficient balance of ETH owned by
the sidechains1 smart contract to pay for any requested withdrawals.

Suppose now that an adversarial user makes a false claim that an event e took
place in G1 and posts a relevant NIPoPoW π in G2. If an honest party is monitor-
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ing the chain G2 for the appearance of NIPoPoWs and the chain G1 for the firing
of events, the fraudulence of π will be immediately obvious to them. They can
subsequently generate a contesting NIPoPoW π∗ providing a counter-claim that e
did not occur. The honest party will broadcast this transaction at the beginning of
the contestation period. Due to the liveness property of G2, the honest party will
manage to include this transaction into G2 within one of the blocks before the end of
the contestation period. The collateral z must be sufficient to incentivize an honest
party to monitor G1 and G2 simultaneously, pay for transaction fees and ensure the
time needed to generate a NIPoPoW π∗ is small as compared to block generation
time. The argument for G2 is analogous. We make this security argument formal
in the next section.

7.2.4 Security of Smart Contract Implementation
We now formalize our protocol and provide a cryptographic analysis of its security.
As NIPoPoWs security is modelled in the Bitcoin Backbone Protocol [60], we work
in the same model (and note that the same mathematical model also captures
Ethereum). See Chapter 2 for more details.

We assume that the standard results of the backbone protocol are attained,
namely blockchain persistence and liveness. Persistence and liveness can be proved
to hold with overwhelming probability under the honest mining majority assump-
tion. For the details of that result, consult the Bitcoin Backbone paper [60].

We show sidechains security by illustrating that the definition from Section 79
is satisfied.

We will show that proving, to the maintainers of a chain G2, that an event e took
place in chain G1 without it actually happening, can only occur if the underlying
NIPoPoWs protocol is insecure. Therefore, our proof strategy follows the standard
form of a cryptographic computational reduction. In our assumptions, we will make
use of the persistence and liveness of G2, but only the persistence of G1.

Theorem 70 (Proof-of-Work Sidechains Security). Assume a secure NIPoPoWs
construction. Then, under the honest majority assumption for both G1 and G2, for
all PPT adversaries A and for all environments Z, the proof-of-work sidechains
construction between G1 and G2 with contestation period 2k is secure, except with
negligible probability in k.

Proof. Let A be an arbitrary PPT adversary against the proof-of-work sidechains
construction and Z be an arbitrary environment. We will construct an adversary
A∗ against NIPoPoWs and an environment Z∗ in which it will operate.

Suppose, without loss of generality, that A can break the security of proof-of-
work sidechains during a cross-chain transfer from G1 to G2. (Because the construc-
tion is symmetric, if the adversary is not able to do that, then they will be able to
break the security of a cross-chain transfer from G2 to G1 and the proof follows in
the same manner.)

Note that A works in an environment with two blockchains, G1 and G2, while
A∗ must work in the environment of one blockchain, namely G1.
A∗ works as follows. First, it simulates the execution of the blockchain civi-

lization G2. That is, it creates a new random oracle for G2 which is independent
of its external random oracle used with G1. For any random oracle queries of A
pertaining to G1, A∗ forwards the queries to its external random oracle. For random
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oracles queries of A pertaining to G2, A∗ answers its queries with its simulated and
independent random oracle. Because A is subject to honest majority limitations in
both G1 and G2, it follows that A∗ will respect honest majority with regards to its
external random oracle. For any environment instructions requested by Z pertain-
ing to G1 (namely, the creation of new parties), the instructions are mirrored by
Z∗. Intructions of Z pertaining to G2 are simulated by A∗. All diffusions of blocks
in G1 by A are also diffused by A∗, while diffusions in G2 by A are held private.
A∗ monitors the chains adopted by honest parties and for every round r observes

the state of all honest parties. A∗ looks for a round r, an event e, a G1 maintainer
p1 and a G2 maintainer p2 for which the following properties hold:

1. p1 has not included e in their state

2. p2 has included e in their finalized-events state

Because of the construction of p2, finalized-events can contain e only if an is-
suance of submit-event-proof is included at least 2k blocks deep and contains the
respective NIPoPoW π stored in events[e].proof. A∗ now returns the proof π.

We will now analyze the probability of success of A. Consider the following
(probabilistic) events:

1. SC-Brk that A is successful

2. Cert-Brk that A∗ is successful

3. Per1 that persistence is maintained in G1

4. Per2 that persistence is maintained in G2

5. Live2 that liveness is maintained in G2

6. BC the union of Per1 ∧ Per2 ∧ Live2

From total probability we obtain:

Pr[SC-Brk] = Pr[SC-Brk|BC]Pr[BC] + Pr[SC-Brk|¬BC]Pr[¬BC]

From the honest majority assumption of G1, we deduce that Pr[¬Per1] and
Pr[¬Live1] are negligible, and similarly from the honest majority assumption of
G2 we deduce that Pr[¬Per2] is negligible, therefore Pr[¬BC] is negligible. It now
suffices to show that the probability Pr[SC-Brk|BC]Pr[BC] is negligible.

Suppose that SC-Brk occurs. It follows that a (blockchain) event e must have
been adopted by p2 with some NIPoPoW π, but not by p1, as detailed above.
Suppose now that BC occurs.

Because of the persistence of G2, when π was burried under k blocks in the
adopted chain of p2, all honest parties in G2 must have seen π (this warrants the
oldest k of the 2k blocks in the contestation period). Because of the liveness of G2,
at least one honest block must have been included in the last k blocks after π had
been received by all honest parties (this warrants the latest k of the 2k blocks in
the contestation period).

Because of the persistence of G1, if e is not included in the state of p1 at round
r, then therefore it cannot have been included in the state of any G1 party during
round r−ηk. It follows that an honest party will attempt and succeed in generating
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a G2 block containing a contesting proof π∗ attesting to the fraudulence of event
e by invoking submit-contesting-proof(π∗, e) and this block will be adopted by p2.
As p2 has finalized e, then therefore it must be such that verifye,Gk,m({π, π∗}), and
therefore Cert-Brk has occurred.

Putting the above together, we obtain that:

Pr[Cert-Brk] ≥ Pr[SC-Brk|BC]Pr[BC]

From the NIPoPoW security assumption, we have that Pr[Cert-Brk] is negligible.
Therefore, Pr[SC-Brk] is negligible.

7.3 Unidirectionality with Proof-of-Burn

7.3.1 Burning Money
Since the dawn of history, humans have entertained the defiant thought of money
burning, sometimes literally, for purposes ranging from artistic effect to protest,
or to prevent it from falling into the hands of pirates [29, 98, 96, 42]. People did
not shy away from the practice in the era of cryptocurrencies. Acts of money
burning immediately followed the inception of Bitcoin [116] in 2009, with the first
recorded instance of intentional cryptocurrency destruction taking place on August
2010 [140], a short three months after the first real-world transaction involving
cryptocurrency in May 2010 [28]. For the first time, however, cryptocurrencies
exhibit the unique ability for money burning to be provable retroactively in a so-
called proof-of-burn.

First proposed by Iain Stewart in 2012 [139], proof-of-burn constitutes a mech-
anism for the destruction of cryptocurrency irrevocably and provably. The ability
to create convincing proofs changed the practice of money burning from a fringe
act to a rational and potentially useful endeavour. It has since been discovered
that metadata of the user’s choice can be uniquely ascribed to an act of burning,
allowing each burn to become tailored to a particular purpose. Such protocols have
been used as a consensus mechanism similar to proof-of-stake (Slimcoin [121]), as a
mechanism for establishing identity (OpenBazaar [123, 160]), and for notarization
(Carbon dating [43] and OpenTimestamps [145]). A particularly apt use case is the
destruction of one type of cryptocurrency to create another. In one prolific case,
users destroyed more than 2,130.87 BTC ($1.7M at the time, $21.6M in today’s
prices) for the bootstrapping of the Counterparty cryptocurrency [1].

While its adoption is undeniable, there has not been a formal treatment for
proof-of-burn. Using the methods outlined in the previous sections and chapters,
one can utilize proofs-of-burn to create a one-way peg: Money is burned on one
chain to be created on another.

This section addresses the following:

(i) Primitive definition. Our definitional contribution introduces proof-of-burn
as a cryptographic primitive for the first time. We define it as a protocol which
consists of two algorithms, a burn address generator and a burn address verifier.
We put forth the foundational properties which make for secure burn protocols,
namely unspendability, binding, and uncensorability. One of the critical features of
our formalization is that a tag has to be bound cryptographically with any proof-
of-burn operation.
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(ii) Novel construction. We propose a novel and simple construction which is
flexible and can be adapted for use in existing cryptocurrencies, as long as they use
public key hashes for address generation. To our knowledge, all popular cryptocur-
rencies are compatible with our scheme. We prove our construction secure in the
Random Oracle model [19].

(iii) Bootstrapping mechanism. We propose a cryptocurrency proof-of-burn
bootstrapping mechanism which does not require miners to connect to external
blockchain networks. Our mechanism in principle allows burning from any proof-
of-work-based cryptocurrency. This is what gives rise to one-way pegs.

(iv) Experimental results. We provide a compehensively tested production
grade implementation of the bootstrapping mechanism in Ethereum written in So-
lidity, which we release as open source software. Our implementation can be used
to consume proofs of burn of a source blockchain within a target blockchain. We
provide experimental measurements for the cost of burn verification and find that,
in current Ethereum prices, burn verification costs $0.28 per transaction. This al-
lows coins burned on one blockchain to be consumed on another for the purposes
of, for example, ERC-20 tokens creation [150].

Workflow. A user who wishes to burn her coins generates an address which we
call a burn address. This address encodes some user-chosen metadata called the tag.
She then proceeds to send any amount of cryptocurrency to the burn address. After
burning her cryptocurrency, she proves to any interested party that she irrevocably
destroyed the cryptocurrency in question.
Properties. We define the following properties for a proof-of-burn protocol:

• Unspendability. No one can spend the burned cryptocurrency.

• Binding. The burn commits only to a single tag.

• Uncensorability. Miners who do not agree with the scheme cannot censor
burn transactions.

Finally, we consider the usability of a proof-of-burn protocol important: whether
a user is able to create a burn transaction using her regular cryptocurrency wallet.

7.3.2 Defining Proof-of-Burn
Let κ be the security parameter.

Definition 81 (Burn protocol). A burn protocol Π consists of two functions Gen-
BurnAddr(1κ, t) and BurnVerify(1κ, t, burnAddr) which work as follows:

• GenBurnAddr(1κ, t): Given a tag t, generate a burn address.

• BurnVerify(1κ, t, burnAddr): Given a tag t and an address burnAddr, return
true if and only if burnAddr is a burn address and correctly encodes t.

The protocol works as follows. Alice first generates an address burnAddr to
which she sends some cryptocurrency. The address encodes information contained
in a tag t and is generated by invoking GenBurnAddr(1κ, t). When the transaction
is completed, she gives the transaction and tag to Bob who invokes BurnVerify(1κ, t,
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burnAddr) to verify she irrevocably destroyed the cryptocurrency while committing
to the provided tag.

We require that the burn scheme is correct.

Definition 82 (Correctness). A burn protocol Π is correct if for all t ∈ {0, 1}∗ and
for all κ ∈ N it holds that BurnVerify(1κ, t,GenBurnAddr(1κ, t)) = true.

With foresight, we remark that the implementation of GenBurnAddr and Burn-
Verify will typically be deterministic, which alleviates the need for a probabilistic
correctness definition.

Naturally, for GenBurnAddr to generate addresses that “look” valid but are un-
spendable according to the blockchain protocol requires that the burn protocol
respects its format. We abstract the address generation and spending verification
of the given system into a blockchain address protocol:

Definition 83 (Blockchain address protocol). A blockchain address protocol Πα

consists of two functions GenAddr and SpendVerify:

• GenAddr(1κ): Returns a tuple (pk, sk), denoting the cryptocurrency address
pk (a public key) used to receive money and its respective secret key sk which
allows spending from that address.

• SpendVerify(m, σ, pk): Returns true if the transaction m spending from receiv-
ing address pk has been authorized by the signature σ (by being signed by the
respective private key).

We note that, while the blockchain address protocol is not part of the burn
protocol, the security properties of a burn protocol Π will be defined with respect
to a blockchain address protocol Πα.

These two functionalities are typically implemented using a public key signature
scheme and accompanied by a respective signing algorithm. The signing algorithm
is irrelevant for our burn purposes, as burning entails the inability to spend. As the
format of m is cryptocurrency-specific, we intentionally leave it undefined. In both
Bitcoin and Ethereum, m corresponds to transaction data. When a new candidate
transaction is received from the network, the blockchain node calls SpendVerify,
passing the public key pk, which is the address spending money incoming to the
new transaction m, together with a signature σ, which signs m and should be
produced using the respective secret key.

To state that the protocol generates addresses which cannot be spent from, we
introduce a game-based security definition. The unspendability game spend-attack
is illustrated in Algorithm 54.

Algorithm 54 The challenger for the burn protocol game-based security.
1: function spend-attackA,Π(κ)
2: (t,m, σ, pk)← A(1κ)
3: return (BurnVerify(1κ, t, pk) ∧ SpendVerify(m,σ, pk))
4: end function

Definition 84 (Unspendability). A burn protocol Π is unspendable with respect to
a blockchain address protocol Πα if for all probabilistic polynomial-time adversaries
A there exists a negligible function negl such that Pr[spend-attackA,Π(κ) = true] ≤
negl.
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Algorithm 55 The challenger for the burn protocol game-based security.
1: function bind-attackA,Π(κ)
2: (t, t′, burnAddr)← A(1κ)
3: return (t ̸= t′ ∧ BurnVerify(1κ, t, burnAddr) ∧ BurnVerify(1κ, t′, burnAddr))
4: end function

It is desired that a burn address encodes one and only one tag. Concretely, given
a burn address burnAddr, BurnVerify(1κ, t, burnAddr) should only evaluate to true
for a single tag t. The game bind-attack in Algorithm 55 captures this property.

Definition 85 (Binding). A burn protocol Π is binding if for all probabilistic
polynomial-time adversaries A there is a negligible function negl such that Pr[bind-
-attackA,Π(κ)] ≤ negl.

We note here that the correctness and binding properties of a burn protocol are
irrespective of the blockchain address protocol it was designed for.

We are now ready to define what constitutes a secure proof-of-burn protocol.

Definition 86 (Security). Let Π be a correct burn protocol. We say Π is secure
with respect to a blockchain address protocol Πα if it is unspendable and binding
with respect to Πα.

The aforementioned properties form a good basis for a burn protocol. We ob-
serve that it may be possible to detect whether an address is a burn address. While
this is desirable in certain circumstances, it allows miners to censor burn transac-
tions. To mitigate this, we propose uncensorability, a property which mandates that
a burn address is indistinguishable from a regular address if its tag is not known.
During the execution of protocols which satisfy this property, when the burn trans-
action appears on the network, only the user who performed the burn knows that it
constitutes a burn transaction prior to revealing the tag. Naturally, as soon as the
tag is revealed, correctness mandates that the burn transaction becomes verifiable.

Definition 87 (Uncensorability). Let T be a distribution of tags. A burn protocol
Π is uncensorable if the distribution ensembles {(pk, sk)← GenAddr(1κ); pk}κ and
{t← T ; pk ← GenBurnAddr(1κ, t); pk}κ are computationally indistinguishable.

7.3.3 Construction
We now present our construction for an uncensorable proof-of-burn protocol. To
generate a burn address, the tag t is hashed and a perturbation is performed on
the hash by toggling the last bit. Verifying a burn address burnAddr encodes a
certain tag t is achieved by invoking GenBurnAddr with tag t and checking whether
the result matches burnAddr. If it matches, the burnAddr correctly encodes t. Our
construction is illustrated in Algorithm 56.

230



Algorithm 56 Our uncensorable proof-of-burn protocol for Bitcoin P2PKH.
1: function GenBurnAddrH(1κ, t)
2: th← H(t)
3: th′ ← th⊕ 1 ▷ Key perturbation
4: return th’
5: end function
6: function BurnVerifyH(1κ, t, th′)
7: return (GenBurnAddrH(1κ, t) = th′)
8: end function

We outline the blockchain address protocol for Bitcoin Pay to Public Key Hash
(P2PKH) [2], with respect to which we prove our construction secure and uncen-
sorable in Section 7.3.5. It is parametrized by a secure signature scheme S and
a hash function H (for completeness, we give a construction which includes the
concrete hash functions and checksums of Bitcoin in Appendix 7.3.8). GenAddr
uses S to generate a keypair and hashes the public key to generate the public key
hash. A tuple consisting of the public key hash and the secret key is returned.
SpendVerify takes a spending transaction m, a scriptSig σ and a public key hash
pkh. The scriptSig should contain the public key pk corresponding to pkh such
that H(pk) = pkh and a valid signature σ′ for the spending transaction m [2]. If
these conditions are met, the function returns true, otherwise it returns false. The
blockchain address protocol is illustrated in Algorithm 57.

Algorithm 57 The Bitcoin P2PKH algorithm, parameterized by a signature
scheme S = (Gen, Sig,Ver).
1: function GenAddrS,H(1κ)
2: (pk, sk)← Gen(1κ)
3: pkh← H(pk)
4: return (pkh, sk)
5: end function
6: function SpendVerifyS,H(m,σ, pkh)
7: (pk, σ′)← σ
8: return (H(pk) = pkh ∧ Ver(m,σ′, pk))
9: end function

7.3.4 Comparison
We now compare alternatives for proof-of-burn proposed in previous work. Our
burn primitive captures all of these schemes.
OP_RETURN. Bitcoin provides a native opcode called OP_RETURN [18] which can be
used for burning. Unfortunately, standard wallets do not provide a user friendly
interface for creating OP_RETURN transactions. However, it benefits the Bitcoin net-
work by allowing the UTXO to be pruned, at the cost of not being uncensorable.
Similarly to OP_RETURN, any provably failing Bitcoin script can be used for burn-
ing [139].
P2SH OP_RETURN. An OP_RETURN or other provably failing script can also be used
as the redeemScript for a Pay to Script Hash (P2SH) [4] address. It is unspendable
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since there is no scriptSig that could make the script succeed. Additionally, it is
uncensorable if the tag is not revealed. Finally, the scheme is user friendly since
any regular wallet can create a burn transaction.
Nothing-up-my-sleeve. An address is manually crafted, so that it is clear it
was not generated from a regular keypair. For example, the all-zeros address is
considered nothing-up-my-sleeve7. It is hard to obtain a public key hashing to
this address, thus funds sent to it are unspendable. Because no metadata can be
associated with such a burn, this scheme is not binding.

We compare the aforementioned schemes on whether they satisfy the burn proto-
col properties we define: Binding, unspendability and uncensorability. Additionally,
we compare them based on how easily they translate to multiple cryptocurrencies.
For instance, OP_RETURN and P2SH OP_RETURN rely on Bitcoin Script semantics and
do not directly apply to any non-Bitcoin based cryptocurrencies like Monero [149],
thus we say they are not flexible. The comparison is illustrated on Table 7.1.

Table 7.1: Comparison between proof-of-burn schemes.

OP_RETURN P2SH OP_RETURN Nothing up
my sleeve

a⊕ 1
(this work)

Binding • • •
Flexible • •

Unspendable • • • •
Uncensorable • • •
User friendly • • •

7.3.5 Security of Burn
We now move on to the analysis of our scheme. As the scheme is deterministic, its
correctness is straightforward to show.

Theorem 71 (Correctness). The proof-of-burn protocol Π of Section 7.3.3 is cor-
rect.

Proof. Based on Algorithm 56, BurnVerify(1κ, t,GenBurnAddr(1κ, t)) = true if and
only if GenBurnAddr(1κ, t) = GenBurnAddr(1κ, t), which always holds as GenBurn-
Addr is deterministic.

We now state a simple lemma pertaining to the distribution of Random Oracle
outputs.

[Perturbation] Let p(κ) be a polynomial and F : {0, 1}κ −→ {0, 1}κ be a permu-
tation. Consider the process which samples p(κ) strings s1, s2, . . . , sp(κ) uniformly
at random from the set {0, 1}κ. The probability that there exists i ̸= j such that
si = F (sj) is negligible in κ.

We will now apply the above lemma to show that our scheme is unspenable.

Theorem 72 (Unspendability). If H is a Random Oracle, then the protocol Π of
Section 7.3.3 is unspendable.

7The Bitcoin address 1111111111111111111114oLvT2 encodes the all-zeros string and has received
more than 50,000 transactions dating back to Aug 2010.
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Proof. Let A be an arbitrary probabilistic polynomial time spend-attack adversary.
A makes at most a polynomial number of queries p(κ) to the Random Oracle. Let
Match denote the event that there exist i ̸= j with si = F (sj) where F (s) = s⊕ 1.

If the adversary is successful then it has presented t, pk, pkh such that H(pk) =
pkh and H(t) ⊕ 1 = pkh. Observe that spend-attackA,Π(κ) = true ⇒ Match.
Therefore Pr[spend-attackA,Π(κ)] ≤ Pr[Match]. Apply Lemma 7.3.5 on F to obtain
Pr[spend-attackA,Π(κ)] ≤ negl.

We note that the security of the signature scheme is not needed to prove un-
spendability. Were the signature scheme of the underlying cryptocurrency ever
found to be forgeable, the coins burned through our scheme would remain unspend-
able. We additionally remark that the choice of the permutation F (x) = x ⊕ 1 is
arbitrary. Any one-to-one function beyond the identity function would work equally
well.
Preventing proof-of-burn. It is possible for a cryptocurrency to prevent proof-
of-burn by requiring every address to be accompanied by a proof of possession [129].
To the best of our knowledge, no cryptocurrency features this.

Next, our binding theorem only requires that the hash function used is collision
resistant and is in the standard model.

Algorithm 58 The collision adversary A∗ against H using a proof-of-burn bind--
attack adversary A.
1: function A∗A(1κ)
2: (t, t′,_)← A(1κ)
3: return (t, t’)
4: end function

Theorem 73 (Binding). If H is a collision resistant hash function then the protocol
of Section 7.3.3 is binding.

Proof. Let A be an arbitrary adversary against Π. We will construct the Collision
Resistance adversary A∗ against H.

The collision resistance adversary, illustrated in Algorithm 58, calls A and ob-
tains two outputs, t and t′. If A is successful then t ̸= t′ and H(t)⊕ 1 = H(t′)⊕ 1.
Therefore H(t) = H(t′).

We thus conclude that A∗ is successful in the collision game if and only if A is
successful in the bind-attack game.

Pr[bind-attackA,Π(κ) = true] = Pr[collisionA∗,H(κ) = true]

From the collision resistance of H it follows that Pr[collisionA∗,H = true] < negl.
Therefore, Pr[bind-attackA,Π = true] < negl, so the protocol Π is binding.

We now posit that no adversary can predict the public key of a secure signature
scheme, except with negligible probability. We call a distribution unpredictable if
no probabilistic polynomial-time adversary can predict its sampling. We give the
formal definition, with some of its statistical properties, in Appendix 7.3.9.

[Public key unpredictability] Let S = (Gen, Sig,Ver) be a secure signature scheme.
Then the distribution ensemble Xκ = {(sk, pk)← Gen(1κ); pk} is unpredictable.

The following lemma shows that the output of the random oracle is indistin-
guishable from random if the input is unpredictable (for the complete proofs see
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Appendix 7.3.9). For reference, the definition of computational indistinguishability
is included in Appendix 7.3.9.

[Random Oracle unpredictability] Let T be an unpredictable distribution en-
semble and H be a Random Oracle. The distribution ensemble X = {t← T ;H(t)}
is indistinguishable from the uniform distribution ensemble U({0, 1}κ).

Theorem 74 (Uncensorability). Let S = (Gen, Sig,Ver) be a secure signature
scheme, H be a Random Oracle, and T be an unpredictable tag distribution. Then
the protocol of Section 7.3.3 instantiated with H,S, T is uncensorable.

Proof. Let X be the distribution ensemble of public keys generated using GenAddr
and Y that of keys generated using GenBurnAddr.

From Lemma 7.3.5 the distribution of public keys generated from S is unpre-
dictable. The function GenAddr samples a public key from S and applies the random
oracle H to it. Applying Lemma 7.3.5, we obtain that X ≈c U({0, 1}κ).

The function H ′(x) = H(x) ⊕ 1 is a random oracle (despite not being in-
dependent from the random oracle H). Since T is unpredictable, and applying
Lemma 7.3.5 with random oracle H ′, we obtain that Y ≈c U({0, 1}κ).

By transitivity, X and Y are computationally indistinguishable.

From the above, we conclude that the tags used during the burn process must be
unpredictable. If the tag is chosen to contain a randomly generated public key from
a secure signature scheme, or its hash, Lemmas 7.3.5 and 7.3.5 show that sufficient
entropy exists to ensure uncensorability. Our cross-chain application makes use of
this fact.

7.3.6 Consumption
Over the last 5 years there has been an explosion of new cryptocurrencies. Unfor-
tunately, it is hard for a new cryptocurrency to gain traction. Without traction, no
market depth ensues and a cryptocurrency has difficulty getting listed in exchanges.
But without being listed in exchanges, a cryptocurrency cannot gain traction.

This chicken-and-egg situation presents the need for a solution that circumvents
exchanges and allows users to acquire the cryptocurrency directly. We propose
utilizing proof-of-burn to allow users to obtain capital on a new cryptocurrency by
burning a legacy cryptocurrency. In line with previous chapters, we call the legacy
one the source and the new one the target cryptocurrency, and their blockchains
the source and target blockchain respectively. The target blockchain may support
burning from multiple source blockchains.
Workflow. A user who wishes to acquire a target cryptocurrency first forms a burn
address valid in the source blockchain which encodes her receiving address on the
target blockchain by using it as a tag. She then sends an amount of source crypto-
currency to that address. She submits a proof of this burn to a smart contract [35]
on the target blockchain, where it is verified and she is credited an equivalent
amount of target cryptocurrency on her receiving address. Proof-of-burn verifica-
tion happens using NIPoPoWs in the work setting, or ATMs in the stake setting.

We define an event as a simple value transfer described by a transaction id txid, a
receiving address addr and an amount amount. Simple value transfers are supported
by all cryptocurrencies, allowing a verifier to process burns from a wide range of
source blockchains. Note that this event type does not yet distinguish between burn
and non-burn addresses.
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For a verifier to be convinced that an event occurred on a source blockchain,
they ensure its transaction is contained in a stable block in the best source chain.
Specifically, the following data are supplied to the smart contract as a proof:

• tx: The transaction which contains the burn on the source blockchain.

• b: The block header for the block which contains tx.

• τtx: An inclusion proof showing tx ∈ b.

• τb: A proof that b is contained in the best (i.e., most proof-of-work) source
blockchain and is stable.

We assume the source blockchain provides a function verify-tx(addr, amount, b,
tx, τtx) which can be written in the smart contract language of the target block-
chain and verifies the validity of a source blockchain transaction. It takes a source
blockchain address addr, an amount of source cryptocurrency amount, a block b,
a transaction tx and a proof τtx for the inclusion of tx in b. It returns true if tx
contains a transfer of amount to addr and the proof τtx is valid for b.

The proof τtx is usually a Merkle Tree inclusion proof. More concretely, in
Bitcoin, each block header contains a commitment to the set of transaction ids in
the block in the form of a Merkle Tree root. Ethereum stores a similar commitment
in its header — the root of a Merkle–Patricia Trie [151].

For verifying that a provided block b belongs to the best source blockchain and
is stable, we assume the existence of a function in-best-chain(b). We explore how it
can be implemented in the “Verifying block connection” paragraph below.
Bootstraping mechanism. Being able to verify events, we can grant target
cryptocurrency to users who burn source cryptocurrency. After burning on the
source blockchain, the user calls the claim function with the aforementioned event
and a proof for it. This function ensures that the event provided is valid and has
not been claimed before (i.e. no one has been granted target cryptocurrency for
this specific event in the past), that it corresponds to the transaction tx and that
the block b is stable, belongs to the best source chain and contains tx. Then, after
verifying by invoking BurnVerify that the receiving address of the event is a burn
address where the tag is the function caller’s address, it releases the amount of coins
burned in the form of an ERC-20 token. We present the contract burn-verifier with
this capability in Algorithm 59.

235



Algorithm 59 A contract for verifying burns from the source chain. This smart
contract runs within the target blockchain.
1: contract burn-verifier extends crosschain; ERC20
2: mapping(address ⇒ uint256) balances
3: claimed-events← ∅
4: function claim(e, b, τtx)
5: block-ok← in-best-chain(b)
6: tx-ok← verify-tx(e.addr, e.amount, b, e.tx, τtx)
7: event-ok← e /∈ claimed-events
8: if block-ok ∧ tx-ok ∧ event-ok ∧ BurnVerify(msg.sender, e.addr) then
9: claimed-events← claimed-events ∪ {e}
10: balances[msg.sender] += e.amount
11: end if
12: end function
13: end contract

In the interest of keeping this implementation generic we assume that the user
receives a token in return for his burn. However, instead of minting a token, the
target cryptocurrency could allow the burn verifier contract to mint native crypto-
currency for any user who successfully claims an event. This would allow the target
cryptocurrency to be bootstrapped entirely though burning as desired.

The problem of verifying a block belongs in the best source chain has been
extensively addressed in the previous chapters. Here, we remark that there are
multiple ways of implementing the aforementioned in-best-chain method.
Direct observation. Miners connect to the source blockchain network and have
access to the best source chain. A miner can thus evaluate if a block is included
in that chain and is stable. This mechanism does not provide miner-isolation. It is
adopted by Counterparty.
NIPoPoWs. Verifying block connection can be achieved through NIPoPoWs. We
remark that, as discussed in the previous chapter, with this setup a block connection
proof may be considered valid provisionally, but there needs to be a period in which
the proof can be disputed for the smart contract to be certain for the validity of
the proof. Specifically, when a user performs a claim, they have to put down some
collateral. If they have provided a valid NIPoPoW, a contestation period begins.
Within that period a challenger can dispute the provided proof which – provided
that the dispute is successful – would turn the result of in-best-chain to false, abort
the claim and grant the challenger the user’s collateral. If the contestation period
ends with the proof undisputed, then in-best-chain evaluates to true, the collateral
gets returned to the user and the claim is performed successfully.
Federation. A simpler approach is to allow a federation of n nodes monitoring the
source chain to vote for their view of the best source chain.
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Algorithm 60 A in-best-chain implementation which verifies that a block b is in-
cluded in the best source chain using the federation mechanism. M denotes the
latest MMR approved by the federation majority.
1: votes← ∅
2: best-idx← 0
3: M← ϵ
4: function votefed(m,σ, pk)
5: if pk ∈ fed ∧ Ver(m,σ, pk) then ▷ Check that pk is a valid federation
member

6: (M∗, idx)← m
7: votes[m]← votes[m] ∪ {pk}
8: if |votes[m]| ≥ ⌊ |fed|2 ⌋+ 1 ∧ idx > best-idx then
9: M←M∗ ▷ Update accepted MMR
10: best-idx← idx
11: end if
12: end if
13: end function
14: function in-best-chainM(b, τb)
15: return VerMT (M, b, τb)
16: end function

The best source chain is expressed as the rootM of a Merkle Tree containing the
chain’s stable blocks as leaves. Each federation node connects to both blockchain
networks, calculatesM and submits their vote for it every time a new source chain
block is found. When a majority of ⌊n2 ⌋ + 1 nodes agrees on the same M, it is
considered valid.

Having a validM, a verifier verifies a Merkle Tree inclusion proof τb for b ∈M
and is certain the block provided is part of the best source chain and is stable. This
approach is illustrated in Algorithm 60.

The more suitable Merkle Mountain Range [32] data structure can be used to
storeM in place of regular Merkle Trees, as they constitute a more efficient append-
only structure.

7.3.7 Empirical Results
In order to evaluate our consumption mechanisms, we implement the federated
consumption mechanism in Solidity. We provide a concrete implementation of the
burn-verifier contract described in Algorithm 59. We implement the crosschain par-
ent contract from [90]. We verify transaction data by making use of the open source
bitcoin-spv library [3]. Finally, the federation mechanism for verifying block con-
nection is employed. The members of the federation can vote on their computed
checkpoints using the vote function.

We release our implementation as open source software under the MIT license8.
The implementation is production-ready and fully tested with 100% code coverage.

At the time of writing we obtain the median gas price of 6.9 gwei and the price
of Ethereum in US Dollars at $170.07. The cost of gas in USD is calculated by the
formula gas ∗ 1.173483 ∗ 10−6 rounded to two decimal places.

8https://github.com/decrypto-org/burn-paper/tree/master/experiment
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Method Gas cost Equivalent in USD
vote 50103 gas $0.06

submit-event-proof 157932 gas $0.19
claim 78267 gas $0.09

Total claim cost 262817 gas $0.28

For the end user to prove an event and claim her burn, the cost is thus $0.28.
Comparatively, for a Bitcoin transaction to be included in the next block at the
time of writing a user has to spend $0.77.

7.3.8 Deployment to Bitcoin

Algorithm 61 The Bitcoin blockchain address protocol, including the engineering
details of checksums and practical hash implementation.
1: function GenAddr()
2: (pk, sk)← Gen()
3: pkh← RIPEMD160(SHA256(0x04 ∥ pk)
4: addr← 0x00 ∥ pkh′ ▷ Magic byte indicating mainnet
5: checksum← SHA256(SHA256(addr))[: 4] ▷ Keep the first 4 bytes
6: return base58(addr ∥ checksum)
7: end function

The scheme described above works for a generic P2PKH cryptocurrency and can
be adapted to any cryptocurrency. We illustrate its suitability by giving a precise
construction for Bitcoin, taking into account the engineering details that are behind
the generation of a Bitcoin P2PKH address. A comparable approach can be used
to generate Ethereum addresses or others.

The way Bitcoin generates P2PKH addresses is illustrated in Algorithm 61.
Here, Gen generates an elliptic curve public key (of fixed key size κ = 256). After
the elliptic curve public key is generated, it is marked by a magic number and sub-
sequently hashed by the so-called HASH160 algorithm, which consists of evaluating
RIPEMD160 on the SHA256 of the public key. The resulting hash is additionally
prefixed by a magic number indicating that the execution is taking place on the
main net (and not the test net), and the final address, together with a checksum,
are encoded using base58 to obtain the final address.

Our burn algorithm follows the same structure for address generation, ensuring
that the magic numbers and checksums validate correctly. In this construction, the
hash function which is modelled as a random oracle is the HASH160 algorithm. The
algorithm is illustrated in Algorithm 62 and works as follows. Given a tag t, the user
derives a 160-byte hash th = RIPEMD160(SHA256(t)) which looks like a public key
hash. The least significant bit of th is then flipped to achieve unspendability. This
produces the 20-byte perturbated hash th′. The perturbated hash is then prefixed
with 0x00 to designate that we’re working on the Bitcoin mainnet as usual. The
checksum is calculated and appended to it, and the result is base58 encoded into
a Bitcoin address which correctly validates.
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Algorithm 62 The key perturbation algorithm which generates a provable proof-
of-burn address which validates under Bitcoin.
1: function GenBurnAddr(t)
2: th← RIPEMD160(SHA256(t))
3: th′ ← th⊕ 0x01 ▷ Key perturbation
4: addr← 0x00 ∥ th′ ▷ Magic byte indicating mainnet
5: checksum← SHA256(SHA256(addr))[: 4] ▷ Keep the first 4 bytes
6: return base58(addr ∥ checksum)
7: end function

7.3.9 Full proofs
In this section, we give the full proofs of our claims. Section 7.3.9 proves some
facts about computationally indistinguishable distributions. In Section 7.3.9, we
introduce unpredictable distributions and show that public keys are unpredictable.
In Section 7.3.9, we prove some facts about random oracles, including Lemma 7.3.5
from which the unspendability of our scheme follows and Lemma 7.3.5 from which
the uncensorability of our scheme follows.

Computational indistinguishability

Algorithm 63 The challenger for computational indistinguishability.
1: function dist-gameA,D0,D1(κ)
2: b

$← {0, 1}
3: z ← Db

4: b∗ ← A(z, 1κ)
5: return (b = b∗)
6: end function

We review the definition of computational indistinguishability between two dis-
tributions X and Y . Define the cryptographic game illustrated in Algorithm 63.
Computational indistinguishability mandates that no adversary can win the game,
except with negligible probability.

Definition 88 (Computational indistinguishability). Two distribution ensembles
{Xκ}κ∈N and {Yκ}κ∈N are computationally indistinguishable if for every probabilis-
tic polynomial-time adversary A, there exists a negligible function negl such that
Pr[dist-gameA,X,Y (κ) = true] < negl.

It is clear that applying an efficiently computable function to indistinguishable
distributions preserves indistinguishability.

Algorithm 64 The distinguisher A∗ between distributions X,Y which makes use
of a distinguisher A between X ′ and Y ′.
1: function A∗X,Y,f (z, 1

κ)
2: return A(f(z))
3: end function
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Lemma 75 (Indistinguishability preservation). Given two computationally indis-
tinguishable distribution ensembles {Xκ}κ∈N and {Yκ}κ∈N, let {fκ}κ∈N, be an effi-
ciently computable family of functions Xκ −→ Yκ. Then the distribution ensembles
X ′ = {fκ(Xκ)}κ∈N and Y ′ = {fκ(Yκ)}κ∈N are computationally indistinguishable.

Proof. Let A be a probabilistic polynomial-time distinguisher between X ′ and Y ′.
Consider the probabilistic polynomial-time distinguisher A∗ between X and Y il-
lustrated in Algorithm 64. Then Pr[dist-gameA∗(κ) = true] = Pr[dist-gameA(κ) =
true]. As Pr[dist-gameA∗(κ) = true] ≤ 1

2 + negl, therefore Pr[dist-gameA(κ) =
true] ≤ 1

2 + negl.

Unpredictable distributions

We call a distribution ensemble unpredictable if no polynomial-time adversary can
guess its output. The cryptographic predictability game is illustrated in Algo-
rithm 65 and the security definition is given below.

Algorithm 65 The challenger for the distribution predictor.
1: function predictA,X(κ)
2: x← X
3: x∗ ← A(1κ)
4: return (x = x∗)
5: end function

Definition 89 (Unpredictable distribution). A distribution ensemble {Xκ}κ∈N is
unpredictable if for all probabilistic polynomial-time adversaries A there is a neg-
ligible function negl such that

Pr[predictA,X(κ) = true] < negl .

We observe that, if each element of a distribution appears with negligible prob-
ability, then the distribution must be unpredictable.

Lemma 76 (Negligible unpredictability). Consider a distribution ensemble {Xκ}κ∈N
and a negligible function negl. If

max
x∈[Xκ]

Pr
x∗←Xκ

[x∗ = x] ≤ negl ,

then X is unpredictable.

Proof. Consider a probabilistic polynomial-time adversary A which predicts Xκ.
The adversary is not given any input beyond 1κ, hence the distribution of its output
is independent from the choice of the challenger. Therefore

Pr[predictA,X(κ) = true] =
∑

x′∈[X]

Pr
x←X

[A(κ) = x′ ∧ x = x′] =

∑
x′∈[X]

Pr[A(κ) = x′] Pr
x←X

[x = x′] ≤ negl
∑

x′∈[X]

Pr[A(κ) = x′] ≤ negl .
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Finally, we observe that public keys generated from secure signature schemes
must be unpredictable.

Algorithm 66 The existential forgery A which tries to guess the secret key through
sampling.
1: function AS(1κ, pk)
2: (pk, sk)← Gen(1κ)
3: return (ϵ, Sig(sk, ϵ))
4: end function

[Public key unpredictability] Let S = (Gen, Sig,Ver) be a secure signature
scheme. Then the distribution ensemble Xκ = {(sk, pk) ← Gen(1κ); pk} is un-
predictable.

Proof. Let p = max
p̂k∈[Xκ]

Prpk←Xκ
[pk = p̂k]. Consider the existential forgery

adversary A illustrated in Algorithm 66 which works as follows. It receives pk as its
input from the challenger, but ignores it and generates a new key pair (pk′, sk′)←
Gen(1κ). Since the two invocations of Gen are independent,

Pr[pk = pk′] ≥ max
p̂k∈[Xκ]

Pr[pk = p̂k ∧ pk′ = p̂k]

= max
p̂k∈[Xκ]

Pr[pk = p̂k]Pr[pk′ = p̂k]

= max
p̂k∈[Xκ]

(
Pr[pk = p̂k]

)2
= p2 .

The adversary checks whether pk = pk′. If not, it aborts. Otherwise, it uses
sk′ to sign the message m = ϵ and returns the forgery σ = Sig(sk,m). From the
correctness of the signature scheme, if pk = pk′, then Ver(pk, Sig(sk,m)) = true and
the adversary is successful. Since the signature scheme is secure, Pr[Sig-forgecma

A,S ] =

negl. But Pr[pk = pk′] ≤ Pr[Sig-forgecma
A,S ] and therefore p ≤

√
Pr[pk = pk′] ≤ negl.

Applying Lemma 76, we deduce that the distribution ensemble Xκ is unpredictable.

Random Oracle properties

In this section, we state some statistical properties of the Random Oracle, which
are useful for the proofs of our main results.

[Perturbation] Let p(κ) be a polynomial and F : {0, 1}κ −→ {0, 1}κ be a permu-
tation. Consider the process which samples p(κ) strings s1, s2, . . . , sp(κ) uniformly
at random from the set {0, 1}κ. The probability that there exists i ̸= j such that
si = F (sj) is negligible in κ.

Proof. Let Match denote the event that there exist 1 ≤ i ̸= j ≤ p(κ) such that
si = F (sj). Let Matchi,j denote the event that si = F (sj). Apply a union bound
to obtain Pr[

⋃
i ̸=j Matchi,j ] ≤

∑
i ̸=j Pr[Matchi,j ]. But Pr[Matchi,j ] = 2−p(κ) and

therefore Pr[Match] ≤
∑

i̸=j 2
−p(κ) ≤ p2(κ)2−p(κ).
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Algorithm 67 The predictor A∗ of the distribution X which makes use of a dis-
tinguisher A between X and U({0, 1}κ).
1: i← 0
2: Q← ∅ ▷ Record of all random oracle queries
3: function H ′H(x)
4: i← i+ 1
5: Q[i]← H(x)
6: return Q[i]
7: end function
8: function A∗X,A(1κ)

9: b
$← {0, 1}

10: if b = 0 then
11: z ← X
12: j

$← [r]
13: else
14: z ← U({0, 1}κ)
15: end if
16: b∗ ← AH′

(z)
17: if b = 1 ∨ j > i then
18: return failure
19: end if
20: return Q[j]
21: end function

[Random Oracle unpredictability] Let T be an unpredictable distribution en-
semble and H be a Random Oracle. The distribution ensemble X = {t← T ;H(t)}
is indistinguishable from the uniform distribution ensemble U({0, 1}κ).

Proof. Let A be an arbitrary polynomial distinguisher between X and U({0, 1}κ).
We construct an adversary A∗ against predictT . Let r denote the (polynomial)
maximum number of random oracle queries of A. The adversary A∗ is illustrated
in Algorithm 67 and works as follows. Initially, it chooses a random bit b $← {0, 1}
and sets Z = X if b = 0, otherwise sets Z = U({0, 1}κ). It samples z ← Z. If
b = 0, then z is chosen by applying GenAddr which involves calling the random
oracle H with some input pk. It then chooses one of A’s queries j $← [r] uniformly
at random. Finally, it outputs the input received by the random oracle during the
jth query of A.

We will consider two cases. Either A makes a random oracle query containing
pk, or it does not. We will argue that, if A makes a random oracle query containing
pk with non-negligible probability, then A∗ will be successful with non-negligible
probability. However, we will argue that, if A does not make the particular random
oracle query, it will be unable to distinguish X from U({0, 1}κ).

Let qry denote the event that b = 0 and A asks a random oracle query with input
pk. Let x denote the random variable sampled by the challenger in the predictability
game of A∗. Let exqry denote the event that b = 0 and A asks a random oracle
query with input equal to x. Observe that, since the input to A does not depend on
x, we have that Pr[exqry] = Pr[qry]. As j is chosen independently of the execution
of A, conditioned on exqry the probability that A∗ is able to correctly guess which
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query caused exqry will be 1
r . Therefore we obtain that Pr[predictA∗,T (κ) = true] =

1
r Pr[exqry] =

1
r Pr[qry]. As Pr[predictA∗,T (κ) = true] ≤ negl and r is polynomial

in κ, we deduce that Pr[qry] ≤ negl.
Consider the computational indistinguishability game depicted in Algorithm 63

in which the distinguisher gives a guess b∗ attempting to identify the origin b of its
input. If b = 0, then the distinguisherA receives a truly random input pkh = H(pk).
If the distinguisher does not query the random oracle with input pk, the input of
the distinguisher is truly random and therefore Pr[b∗ = 0|b = 0|¬qry] = Pr[b∗ =
0|b = 1].

Consider the case where b = 0 and apply total probability to obtain

Pr[b∗ = 0|b = 0] =

Pr[b∗ = 0|qry]Pr[qry] + Pr[b∗ = 0|b = 0|¬qry]Pr[¬qry]
≤Pr[b∗ = 0|qry]Pr[qry] + Pr[b∗ = 0|b = 0|¬qry]
≤Pr[qry] + Pr[b∗ = 0|b = 0|¬qry]

Then Pr[dist-gameA,X,U({0,1}κ) = true] = Pr[b = b∗] is the probability of success
of the distinguisher. Applying total probability we obtain

Pr[b = b∗] = Pr[b = b∗|b = 0]Pr[b = 0] + Pr[b = b∗|b = 1]Pr[b = 1]

=
1

2
(Pr[b∗ = 0|b = 0] + Pr[b∗ = 1|b = 1])

≤ 1

2
(Pr[qry] + Pr[b∗ = 0|b = 0|¬qry] + Pr[b∗ = 1|b = 1])

=
1

2
(Pr[qry] + Pr[b∗ = 0|b = 1] + Pr[b∗ = 1|b = 1])

=
1

2
(Pr[qry] + Pr[b∗ = 0|b = 1] + (1− Pr[b∗ = 0|b = 1]))

=
1

2
(1 + Pr[qry]) ≤ 1

2
+ negl

7.3.10 Relaxing the Random Oracle assumption
The construction presented above works for P2PKH and achieves its unspendabil-
ity and uncensorability in the Random Oracle model. In this section, we discuss
alternative constructions which work without requiring the Random Oracle model.

The simplest blockchain address protocol is the Pay to Public Key (P2PK)
protocol which, in contrast to P2PKH does not hash the public key to generate
an address. Instead, the address is literally the public key and spending verifi-
cation simply checks the validity of a signature. This protocol is illustrated in
Algorithm 68.
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Algorithm 68 The blockchain address P2PK algorithm, parameterized by a sig-
nature scheme S = (Gen, Sig,Ver).
1: function GenAddrS(1κ)
2: (pk, sk)← Gen(1κ)
3: return (pk, sk)
4: end function
5: function SpendVerifyS(m,σ, pk)
6: return Ver(m,σ′, pk)
7: end function

Without the Random Oracle model, our construction must be tailored to the
signature scheme in order to ensure uncensorability, as our addresses must look
similar to public keys generated by the scheme. We describe a burn scheme which
can work for (EC)DSA signatures, as used in most cryptocurrencies today. Our
scheme is unconditionally correct and binding in the standard model. We provide
evidence of uncensorability in the Common Random String model, assuming the
DLOG problem is hard and a collision resistant hash function exists. Additionally,
we provide evidence that our scheme is unspendable in the Common Random String
model and that no generic unspendable construction is possible in the standard
model.

Initially, a κ-order multiplicative group G of order q and a generator g are
selected and let the Common Random String be a random group element h = gy

for some y ∈ [q]. Due to the self-reducibility of the DLOG problem, if DLOG is
difficult in the group, an adversary will not be able to find the logarithm y of the
random group element, except with negligible probability.

Our scheme is illustrated in Algorithm 69. GenBurnAddr hashes the tag t and
treats H(t) as the exponent, calculates the public key gH(t) and blinds it using the
factor h. As before, BurnVerify regenerates the burn address from t and ensures it
has been calculated correctly.

Algorithm 69 Our proof-of-burn protocol for P2PK using a Common Random
String h representing a group element in which DLOG is difficult and parameterized
by a collision resistant hash function H.
1: function GenBurnAddrH(1κ, t)
2: return hgH(t)

3: end function
4: function BurnVerifyH(1κ, t, th)
5: return (GenBurnAddr(1κ, t) = th)
6: end function

Correctness holds unconditionally.

Theorem 77 (Correctness). The proof-of-burn protocol Π of Algorithm 69 is cor-
rect.

Proof. Based on Algorithm 69, BurnVerify(1κ, t,GenBurnAddr(1κ, t)) = true if and
only if GenBurnAddr(1κ, t) = GenBurnAddr(1κ, t), which always holds as GenBurn-
Addr is deterministic.
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As evidence towards unspendability, we now remark that it is difficult for an
adversary to obtain the secret key corresponding to the public key hgH(t) needed
to produce signatures. We therefore conjecture that our scheme is unspendable.

Algorithm 70 The random discrete log solver A∗ which makes use of an adversary
A which recovers the spending key corresponding to hgH(t).
1: function A∗A,H(h)
2: (t, z)← A(h)
3: return z −H(t)
4: end function

Lemma 78 (Logarithm ignorance). If h is a Common Random String and as-
suming the DLOG problem is hard, no probabilistic polynomial-time adversary can
produce (t, z) such that gz = hgH(t), except with negligible probability in κ.

Proof. Suppose A is a probabilistic polynomial-time adversary which produces (t, z)
with probability of success p = Pr[gz = hgH(t)]. We construct the adversary A∗
which invokes A illustrated in Algorithm 70 and finds the logarithm of h. Con-
ditioned on the event that A is successful, we have that gz = hgH(t) ⇒ gz =
gy+H(t) ⇒ y ≡ z−H(t) (mod q), so A∗ is successful. Therefore Pr[A∗(h) = y] = p.
But Pr[A∗(h) = y] is negligible.

This observation illustrates the useful fact that, if a single group element with
unknown logarithm is provided, an arbitrary number of such group elements can
be found and logarithm ignorance can be proven.
Proofs-of-ignorance. There are other constructions which can give similar
results. In fact, recent work on proofs-of-ignorance [46] has shown that any NP
language can support proofs-of-ignorance, which are a prerequisite for our need of
unspendability (as inability to produce signatures mandates ignorance of the pri-
vate key). Therefore, we conjecture that such constructions are possible using any
secure signature scheme in which the secret key constitutes a witness for the fact
that the public key is an element of an NP language. Additionally, they argue that
such constructions are not possible in the standard model given non-uniform prob-
abilistic polynomial-time adversaries, supporting our construction in the Common
Random String model. Whether burn constructions in the Standard Model exist
against uniform probabilistic polynomial-time adversaries remains a question for
future work.

Algorithm 71 The collision adversary A∗ against H using a proof-of-burn bind--
attack adversary A.
1: function A∗A(1κ)
2: (t, t′,_)← A(1κ)
3: return (t, t’)
4: end function

Theorem 79 (Binding). If the hash function H is collision resistant and its range
lies in [q] where q denotes the group order of G, then the proof-of-burn protocol Π
of Algorithm 69 is binding.
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Proof. Let A be a probabilistic polynomial-time binding adversary against the pro-
tocol Π. We construct the probabilistic polynomial-time collision adversary A∗
against the hash function H. The adversary A∗ is illustrated in Algorithm 71 and
works as follows. It invokes A which returns a triplet (t, t′, burnAddr), then returns
the collision (t, t′). Let p denote the probability that A is successful.

Conditioned on the event that A is successful, it holds that hgH(t) = hgH(t′) and
t ̸= t′. This implies that gH(t) = gH(t′), which in turns yields H(t) ≡ H(t′) (mod q).
Since the range of H lies in [q], this constitutes a collision and A∗ is successful.

We thus conclude that A∗ is successful in the collision game if and only if A is
successful in the bind-attack game.

Pr[bind-attackA,Π = true] = Pr[collisionA∗,H = true]

From the collision resistance of H it follows that Pr[collisionA∗,H = 1] < negl.
Therefore, Pr[bind-attackA,Π = true] < negl, so the protocol Π is binding.

We now give some evidence towards the uncensorability of our scheme. The
following lemma expands on the results of Lemma 7.3.5 without making use of the
Random Oracle model.

Algorithm 72 The collision adversary A against H which samples from an unpre-
dictable distribution T .
1: function AH,T (1κ)
2: t1 ← T
3: t2 ← T
4: return (t1, t2)
5: end function

Lemma 80 (Collision resistant unpredictability). Let H be a collision resistant
hash function and {T }κ∈N be an efficiently samplable unpredictable distribution
ensemble. Then the distribution ensemble Xκ = {t← T ;H(t)} is unpredictable.

Proof. Consider the collision adversary A against the hash function H illustrated
in Algorithm 72 which samples t1 and t2 independently from Tκ and hopes for a
collision. Let Collh∗ denote the event that H(t1) = H(t2) = h∗. Applying total
probability

max
h∗∈[Xκ]

Pr[Collh∗ ]

= max
h∗∈[Xκ]

(Pr[Collh∗ |t1 = t2]Pr[t1 = t2] + Pr[Collh∗ |t1 ̸= t2]Pr[t1 ̸= t2])

≤ max
h∗∈[Xκ]

Pr[Collh∗ |t1 = t2]Pr[t1 = t2]

+ max
h∗∈[Xκ]

Pr[Collh∗ |t1 ̸= t2]Pr[t1 ̸= t2]

≤ max
h∗∈[Xκ]

Pr[t1 = t2] + max
h∗∈[Xκ]

Pr[Collh∗ |t1 ̸= t2]Pr[t1 ̸= t2]

= Pr[t1 = t2] + max
h∗∈[Xκ]

Pr[Collh∗ ∧ t1 ̸= t2] .
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Therefore maxh∗∈[Xκ] Pr[Collh∗ ∧ t1 ̸= t2] ≥ maxh∗∈[Xκ] Pr[Collh∗ ] − Pr[t1 = t2].
We have that

Pr[collisionA(κ) = true] =
∑

h∗∈[Xκ]

Pr[Collh∗ ∧ t1 ̸= t2]

≥ max
h∗∈[Xκ]

Pr[Collh∗ ∧ t1 ̸= t2] ≥ max
h∗∈[Xκ]

Pr[Collh∗ ]− Pr[t1 = t2] .

Since Pr[collisionA(κ) = true] ≤ negl and Pr[t1 = t2] ≤ negl, therefore

max
h∗∈[Xκ]

Pr[Collh∗ ] ≤ negl .

Because H(t1) and H(t2) are chosen independently,

max
h∗∈[Xκ]

Pr
x←Xκ

[x = h∗] =
√

max
h∗∈[Xκ]

Pr[Collh∗ ] ≤ negl .

Applying Lemma 76, we deduce that the distribution ensemble Xκ is unpredictable.

Unfortunately, a merely unpredictable distribution on the exponent does not
allow us to prove uncensorability. However, we can prove uncensorability if we
assume the hash function maps the tag distribution to the uniform distribution
U([q]) of the exponents of G, which is an assumption closely related to the Random
Oracle. We leave the relaxation of this additional assumption for future work.

Theorem 81 (Uncensorability). Let T be an efficiently samplable unpredictable tag
distribution and H be a hash function such that {t ← Tκ;H(t)} ≈c U([q]) where q
denotes the order of the group G. Then the proof-of-burn protocol Π of Algorithm 69
is uncensorable with respect to blockchain address protocol Πα of Algorithm 68.

Proof. Apply Lemma 75 to the computationally indistinguishable distribution en-
sembles X = {t ← Tκ;H(t)} and Y = U([q]) mapped through the function
f(x) = gx. The resulting distributions, gX and gY are indistinguishable. The
distribution gY is the distribution of public keys generated by GenAddr. As multi-
plication by h constitutes a permutation of the group, the distribution gY is identical
to the distribution hgY . Hence gX and hgY are indistinguishable.

Trusted setup. We remark here that we do not require a trusted setup. In par-
ticular, for the selection of the protocol parameters, we do not generate a Common
Reference String gy by selecting a random y and computing gy, as this would re-
quire ensuring y is destroyed. Instead, we select a random group element h directly,
which is possible in many finite groups. As an example of such a construction in
practice, a point can be selected on the secp256k1 elliptic curve by starting with an
X coordinate corresponding to a well-known number such as X = SHA256(“Whereof
one cannot speak, thereof one must be silent”) and incremented until a solution of
the elliptic curve equation exists for Y , then taking the positive such Y and using
the point h = (X,Y ).
Perturbation of group element labels. Yet another scheme that can potentially
realize the above properties is the burn address generation by evaluating (gH(t))+1,
where the +1 does not pertain to the group operation, but operates on the label of
the group element. For example, in the primed order group Z∗p, the +1 operation
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can be taken to be literally the next integer. Such a scheme is clearly correct
and binding. Its uncensorability is comparable to our above scheme. Lastly, its
unspendability, given appropriate restrictions (t ̸= 0) seems to intuitively hold: It
is hard to know the logarithm of both a group element and its next. Whether this
is provable in the Generic Group Model or using appropriate hardness assumptions
is left for future work.
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Chapter 8

Conclusion

Throughout this thesis, we have presented effective consensus compression mecha-
nisms for all decentralized blockchain protocols, in particular for both proof-of-work
and proof-of-stake. We introduced the NIPoPoWs primitive for proof-of-work and
the ATMS primitive for proof-of-stake. For proof-of-work, we presented the follow-
ing variants:

• Charity with goodness in the static synchronous model, which achieves security
against a 1

2 adversary, but succinctness only optimistically.

• Charity without goodness which achieves both security and succinctness against
a 1

3 adversary in both the static and variable synchronous models and achieves
both security and succinctness against a 1

4 adversary in both the static and
variable ∆-bounded delay model. Succinctness is achieved when difficulty
does not decrease exponentially.

• Distill, which achieves comparable results to the above, with the additional
assumption that difficulty is non-decreasing.

For the first among the above, we gave concrete security parameters obtained
through experimental analysis and simulations.

We gave three important applications of our primitives:

• Superlight clients, which allow the construction of wallets that can synchronize
faster than standard SPV wallets. The improvement is exponential for proof-
of-work and constant for proof-of-stake.

• Logarithmic space mining, which allows the replacement of all proof-of-work
miners of the protocol with logarithmic-space equivalents under the assump-
tion that honest 1

4 majority holds always. The improvement is exponential
compared to standard miners for both state as well as communication com-
plexity.

• Blockchain interoperability, which allows any variant of blockchains to com-
municate, namely work/work, work/stake and stake/stake. We gave con-
structions using native support (for stake) as well as smart contract-based
constructions (for work) and showed how they can be used for generic in-
formation transfer. Finally, we leveraged them to construct one-way and
two-way pegs.
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In addition to improving efficiency of existing solutions, our constructions hint
towards two avenues which are in need of improvement in the blockchain space
more generally. The first avenue concerns scalability, a major current topic of
research in the field. While most solutions have been focusing on layer-2 solutions
such as Lightning [126], our solution of allowing multiple chains to interoperate
and in particular our proposal to separate the notion of a cryptocurrency from its
native blockchain allows sidechains to be used to offload transaction traffic off of a
main chain and into multiple sidechains. As long as the majority of transactions
remain within one chain and are not cross-chain transactions, sidechain solutions
can improve the scalability of the main chain. One example means of ensuring
sharded transaction traffic is to create one sidechain per particular industry or wide
geographical location. The second avenue concerns upgradability and the trial of
new features. While soft forks and hard forks require consensus change and may
face opposition, sidechains can be used to trial out new features without requiring
all of the main chain to upgrade to these new features. This can be useful for
beta-testing, but also for adopting features that are considered more risky by the
majority. The portion of the population willing to take the risk can move their
capital to a novel sidechain, while the risk-averse majority can leverage the firewall
property to protect their capital on the main chain.

Overall, our proposals have given rise to vibrant new research directions and have
inspired solutions which are seeing practical adoption across the cryptocurrency
space. Multiple production cryptocurrencies have adopted our protocols, among
others ERGO, nimiq, and WebDollar. Lastly, our primitives have been implemented
and extended by researchers in peer reviewed papers. One prominent example
is FlyClient [32], which provides an alternative implementation to our NIPoPoW
primitive.

8.1 Future Work
As we have seen, the consensus compression primitives have numerous important
applications which can have significant impact in the space. For these to be de-
ployable in practice with confidence, more research is needed around the primitives.
Around the topic of proof-of-stake sidechains, the central question that remains is
whether it is possible to do so succinctly, i.e., in O(polylog(|C|)). For NIPoPoWs,
more research is needed to establish how much the model in which they achieve
security can be relaxed.

We identify three major directions for future work, which we summarize below.
Velvet NIPoPoWs. In Chapter 3, we discussed various deployment strategies

for NIPoPoWs and we pointed out that deployment can be made using a hard fork,
a soft fork, or a velvet fork, and we described some algorithmic modifications to
our protocols which make velvet forking possible. However, no proof of security
was provided. In fact, velvet fork security is more complicated than what it seems
on the surface. At first glance it seems that the adversary cannot benefit from
including incorrect pointers: She can only include either altogether wrong pointers,
or pointers that point to the correct superblock level but are not the most recent
superblock. The first ones can be filtered out by the verified who can check the hash
of the superblock pointer. As for the wrong ones, it seems that the adversary can
only submit pointers to older blocks in the same chain, which would only harm their
success rate. However, upon closer inspection one observes the following interesting
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attack: The adversary is able to include pointers not only to older superblocks of
the correct level on the same chain, but also on different chains. These blocks,
although they have necessary been created prior to the block in which their pointer
is included, may not be ancestors of the block in question. This allows the adversary
to play a game of chain sewing by “cutting” and “pasting” chunks of the honestly
generated chain into their dishonest fork. This cutting and pasting allows the velvet
adversary to “borrow” proof-of-work from an honest chain which does not belong
to its adversarial fork, making it potentially win when compared against an honest
fork. In short, the tree containing all interlink pointers does not look like a tree at
all in the velvet case, but it forms a Directed Acyclic Graph. Patching the protocol
and proving security under these settings is challenging and is explored in follow-up
work [88].

NIPoPoWs under dishonest majority. While our analysis has used the
assumption that honest majority holds for all rounds, it is a known result that full
nodes in proof-of-work settings can withstand temporary dishonest majority [9].
More specifically, consider an execution in which honest majority holds most of
the time, but a spike of dishonest majority occurs for a limited number of rounds.
The short period of dishonest majority is then followed by a much longer period
of honest majority. While the ledger property of persistence can be lost for the
duration of the dishonest majority spike and for an additional period thereafter,
the protocol is self-healing in that, given sufficient time during which honest ma-
jority holds, the protocol can recover and persistence will be restored. This stems
from the fact that the common prefix property of chains is self-healing. A natural
question that arises is whether NIPoPoWs are also self-healing. More specifically,
in a temporary dishonest execution, a NIPoPoW verifier can be convinced to choose
a chain that does not correspond to the chain that a full node honest party would
choose. For example, that chain could be a short chain (such that the full node
would reject it) with many superblocks (such that the NIPoPoW verifier would ac-
cept it). However, it seems that such proofs will become superseded by honestly
generated proofs that correspond to a chain adopted by an honest full node if suffi-
cient time time with honest majority is allowed to pass. A full proof of this security
claim in the temporary dishonest model would significantly increase our confidence
in superblock-based NIPoPoWs.

Bribing-resilient NIPoPoWs. One criticism of using superblocks to con-
struct NIPoPoWs has been the susceptibility of these proofs to bribing [32]. The
argument goes like this: While under the honest majority assumption the distribu-
tion of superblocks within chains will be as expected, the real protocol does not have
honest majority. Instead, parties behave rationally and would be happy to deviate
from the honest protocol if appropriate incentives are provided. The idea then is for
the adversary to bribe miners in exchange for keeping high-level superblocks with-
held. Because high-level blocks are rare, the money needed to bribe these miners
will be small. More specifically, suppressing µ-level superblocks in expectation has
a cost equal to the block reward multiplied by |C|2−µ which is the number of blocks
that the adversary wishes suppressed. In fact, the cost can be even less if not all µ
superblocks are suppressed. In the case of our charity with goodness construction,
such bribes can only harm the succinctness of the proofs, not their security. How-
ever, a harm in succinctness can translate to a harm in security depending on the
application. For example, a cross-chain smart contract as disucussed in Chapter 7
has very limited gas available, and proofs that are ω(polylog(|C|)) would easily ex-
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haust those limits. A failure of the smart contract to receive proofs would not only
cause a denial of service, but can easily have financial cost incured by the victims.
That cost can be sufficient to provide capital to an adversary for bribing miners.
On the other hand, our charity without goodness and our distill constructions di-
rectly rely on good distribution of superblocks within the chains even for security,
not just for succinctness. As such, a bribe can directly harm security, and it is not
hard to imagine a rational adversary who makes sufficient money from their attack
to be able to use some of it for bribing purposes. To fix this issue, miner rewards
have to be rebalanced according to superblock levels. As such, a µ-level superblock
must receive a reward equal to 2µ times the reward of a 0-level block. This makes
bribing for the purposes of block suppression as costly as bribing for suppressing
the whole chain. Therefore, if the participants believe the chain itself to be secure
and not bribable, the superblocks will also survive for the same reasons. In fact,
it may be possible to allocate such rewards with a soft fork using a smart contract
beneficiary. The exact mechanics needed for reward allocation to make NIPoPoWs
bribing-resilient will be explored in future work.

8.2 Epilogue
Computer science is a data-driven science in which optimization according to some
measurable metric or another always remains the main goal. In our case, we have
optimized the space and communication complexity of blockchain consensus pro-
tocols, and this has given rise to important applications on top. In focusing on a
narrow optimization problem, it is often easy to forget that our work has moral im-
pact, and one has to keep in mind the moral character of cryptographic work [130].
In addition to the moral dilemmas of secrecy and transparency faced by our pre-
decessor cryptographers who worked on secure messaging and digital signatures, as
blockchain scientists we are facing broader ethical questions which stem from the
fact that the protocols we design have the potential for enormous economic and
political impact if they are ever to become mainstream. When I began this thesis
four years ago, I was, perhaps naïvely, extremely excited about the democratization
that blockchain protocols can bring to the world, from their promise to bank the
unbanked to the elimination of the extravagant fees charged by private financial
institutions.

Throughout the duration of this work, after studying and understanding the
topics in depth and develping new protocols, some of that initial excitement faded
and turned to partial disillusionment. This came especially through numerous dis-
cussions and research conducted together with my colleague Dimitris Karakostas
and our findings on lack of blockchain egalitarianism [74] (which does not form
part of the present work). As a new scientist, naturally it is often easy to dismiss
legacy systems such as the existing monetary and banking system by focusing on
their shortcomings instead of their advantages which one often overlooks. Despite
more sober, I am still excited about the future that blockchains and decentralized
protocols can bring if we make good use of them. We shall keep working on them
with ethics in mind. Some big picture questions will keep coming up: Are our
new protocols better than the legacy system, and in which ways? Do they lack in
others? Most importantly, are we building systems which will form a net benefit
for humankind and the less fortunate in our society? Do they preserve or improve
upon egalitarianism and democracy, and in which ways exactly? These are not ex-
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act science questions. While everyone’s answers might be different, it is imperative
that we consider the questions and each of us makes their own judgement. For, in
solving our mathematical equations and proving our theorems, we must not forget
the real people that our work will impact.
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Attribution 3.0 Unported
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“as-is” basis. Creative commons makes no warranties regarding the in-
formation provided, and disclaims liability for damages resulting from
its use.

License

The work (as defined below) is provided under the terms of this creative commons
public license (“ccpl” or “license”). The work is protected by copyright and/or other
applicable law. Any use of the work other than as authorized under this license or
copyright law is prohibited.

By exercising any rights to the work provided here, you accept and agree to be
bound by the terms of this license. To the extent this license may be considered to
be a contract, the licensor grants you the rights contained here in consideration of
your acceptance of such terms and conditions.

1. Definitions

(a) “Adaptation” means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation, derivative work,
arrangement of music or other alterations of a literary or artistic work, or
phonogram or performance and includes cinematographic adaptations or any
other form in which the Work may be recast, transformed, or adapted includ-
ing in any form recognizably derived from the original, except that a work that
constitutes a Collection will not be considered an Adaptation for the purpose
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271



by reason of the selection and arrangement of their contents, constitute intel-
lectual creations, in which the Work is included in its entirety in unmodified
form along with one or more other contributions, each constituting separate
and independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be considered
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ownership.
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(f) “Work” means the literary and/or artistic work offered under the terms of
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(g) “You” means an individual or entity exercising rights under this License who
has not previously violated the terms of this License with respect to the Work,
or who has received express permission from the Licensor to exercise rights
under this License despite a previous violation.

(h) “Publicly Perform” means to perform public recitations of the Work and to
communicate to the public those public recitations, by any means or process,
including by wire or wireless means or public digital performances; to make
available to the public Works in such a way that members of the public may
access these Works from a place and at a place individually chosen by them;
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to perform the Work to the public by any means or process and the commu-
nication to the public of the performances of the Work, including by public
digital performance; to broadcast and rebroadcast the Work by any means
including signs, sounds or images.

(i) “Reproduce” means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of fixation and
reproducing fixations of the Work, including storage of a protected perfor-
mance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or
restrict any uses free from copyright or rights arising from limitations or exceptions
that are provided for in connection with the copyright protection under copyright
law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licen-
sor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the
duration of the applicable copyright) license to exercise the rights in the Work as
stated below:

(a) to Reproduce the Work, to incorporate the Work into one or more Collections,
and to Reproduce the Work as incorporated in the Collections;

(b) to create and Reproduce Adaptations provided that any such Adaptation,
including any translation in any medium, takes reasonable steps to clearly
label, demarcate or otherwise identify that changes were made to the original
Work. For example, a translation could be marked “The original work was
translated from English to Spanish,” or a modification could indicate “The
original work has been modified.”;

(c) to Distribute and Publicly Perform the Work including as incorporated in
Collections; and,

(d) to Distribute and Publicly Perform Adaptations.

(e) For the avoidance of doubt:

(1) Non-waivable Compulsory License Schemes. In those jurisdictions
in which the right to collect royalties through any statutory or compul-
sory licensing scheme cannot be waived, the Licensor reserves the exclu-
sive right to collect such royalties for any exercise by You of the rights
granted under this License;

(2) Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or compulsory
licensing scheme can be waived, the Licensor waives the exclusive right
to collect such royalties for any exercise by You of the rights granted
under this License; and,

(3) Voluntary License Schemes. The Licensor waives the right to col-
lect royalties, whether individually or, in the event that the Licensor
is a member of a collecting society that administers voluntary licensing
schemes, via that society, from any exercise by You of the rights granted
under this License.
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The above rights may be exercised in all media and formats whether now known
or hereafter devised. The above rights include the right to make such modifications
as are technically necessary to exercise the rights in other media and formats. Sub-
ject to Section 8(f), all rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

(a) You may Distribute or Publicly Perform the Work only under the terms of
this License. You must include a copy of, or the Uniform Resource Identifier
(URI) for, this License with every copy of the Work You Distribute or Publicly
Perform. You may not offer or impose any terms on the Work that restrict
the terms of this License or the ability of the recipient of the Work to exercise
the rights granted to that recipient under the terms of the License. You may
not sublicense the Work. You must keep intact all notices that refer to this
License and to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly Perform
the Work, You may not impose any effective technological measures on the
Work that restrict the ability of a recipient of the Work from You to exercise
the rights granted to that recipient under the terms of the License. This
Section 4(a) applies to the Work as incorporated in a Collection, but this
does not require the Collection apart from the Work itself to be made subject
to the terms of this License. If You create a Collection, upon notice from any
Licensor You must, to the extent practicable, remove from the Collection any
credit as required by Section 4(b), as requested. If You create an Adaptation,
upon notice from any Licensor You must, to the extent practicable, remove
from the Adaptation any credit as required by Section 4(b), as requested.

(b) If You Distribute, or Publicly Perform the Work or any Adaptations or Col-
lections, You must, unless a request has been made pursuant to Section 4(a),
keep intact all copyright notices for the Work and provide, reasonable to the
medium or means You are utilizing: (i) the name of the Original Author (or
pseudonym, if applicable) if supplied, and/or if the Original Author and/or
Licensor designate another party or parties (e.g., a sponsor institute, pub-
lishing entity, journal) for attribution (“Attribution Parties”) in Licensor’s
copyright notice, terms of service or by other reasonable means, the name
of such party or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor specifies to be
associated with the Work, unless such URI does not refer to the copyright
notice or licensing information for the Work; and (iv) , consistent with Sec-
tion 3(b), in the case of an Adaptation, a credit identifying the use of the
Work in the Adaptation (e.g., “French translation of the Work by Original
Author,” or “Screenplay based on original Work by Original Author”). The
credit required by this Section 4 (b) may be implemented in any reasonable
manner; provided, however, that in the case of a Adaptation or Collection,
at a minimum such credit will appear, if a credit for all contributing authors
of the Adaptation or Collection appears, then as part of these credits and
in a manner at least as prominent as the credits for the other contributing
authors. For the avoidance of doubt, You may only use the credit required
by this Section for the purpose of attribution in the manner set out above
and, by exercising Your rights under this License, You may not implicitly or
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explicitly assert or imply any connection with, sponsorship or endorsement
by the Original Author, Licensor and/or Attribution Parties, as appropriate,
of You or Your use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution Parties.

(c) Except as otherwise agreed in writing by the Licensor or as may be other-
wise permitted by applicable law, if You Reproduce, Distribute or Publicly
Perform the Work either by itself or as part of any Adaptations or Collec-
tions, You must not distort, mutilate, modify or take other derogatory action
in relation to the Work which would be prejudicial to the Original Author’s
honor or reputation. Licensor agrees that in those jurisdictions (e.g. Japan),
in which any exercise of the right granted in Section 3(b) of this License (the
right to make Adaptations) would be deemed to be a distortion, mutilation,
modification or other derogatory action prejudicial to the Original Author’s
honor and reputation, the Licensor will waive or not assert, as appropriate,
this Section, to the fullest extent permitted by the applicable national law,
to enable You to reasonably exercise Your right under Section 3(b) of this
License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer. Unless otherwise mu-
tually agreed to by the parties in writing, licensor offers the work as-is and makes
no representations or warranties of any kind concerning the work, express, implied,
statutory or otherwise, including, without limitation, warranties of title, merchan-
tibility, fitness for a particular purpose, noninfringement, or the absence of latent
or other defects, accuracy, or the presence of absence of errors, whether or not dis-
coverable. Some jurisdictions do not allow the exclusion of implied warranties, so
such exclusion may not apply to you.

6. Limitation on Liability. Except to the extent required by applicable
law, in no event will licensor be liable to you on any legal theory for any special,
incidental, consequential, punitive or exemplary damages arising out of this license
or the use of the work, even if licensor has been advised of the possibility of such
damages.

7. Termination

(a) This License and the rights granted hereunder will terminate automatically
upon any breach by You of the terms of this License. Individuals or entities
who have received Adaptations or Collections from You under this License,
however, will not have their licenses terminated provided such individuals or
entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7,
and 8 will survive any termination of this License.

(b) Subject to the above terms and conditions, the license granted here is perpet-
ual (for the duration of the applicable copyright in the Work). Notwithstand-
ing the above, Licensor reserves the right to release the Work under different
license terms or to stop distributing the Work at any time; provided, however
that any such election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the terms of this Li-
cense), and this License will continue in full force and effect unless terminated
as stated above.

8. Miscellaneous
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(a) Each time You Distribute or Publicly Perform the Work or a Collection, the
Licensor offers to the recipient a license to the Work on the same terms and
conditions as the license granted to You under this License.

(b) Each time You Distribute or Publicly Perform an Adaptation, Licensor offers
to the recipient a license to the original Work on the same terms and conditions
as the license granted to You under this License.

(c) If any provision of this License is invalid or unenforceable under applicable law,
it shall not affect the validity or enforceability of the remainder of the terms
of this License, and without further action by the parties to this agreement,
such provision shall be reformed to the minimum extent necessary to make
such provision valid and enforceable.

(d) No term or provision of this License shall be deemed waived and no breach
consented to unless such waiver or consent shall be in writing and signed by
the party to be charged with such waiver or consent.

(e) This License constitutes the entire agreement between the parties with re-
spect to the Work licensed here. There are no understandings, agreements or
representations with respect to the Work not specified here. Licensor shall
not be bound by any additional provisions that may appear in any commu-
nication from You. This License may not be modified without the mutual
written agreement of the Licensor and You.

(f) The rights granted under, and the subject matter referenced, in this License
were drafted utilizing the terminology of the Berne Convention for the Protec-
tion of Literary and Artistic Works (as amended on September 28, 1979), the
Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO
Performances and Phonograms Treaty of 1996 and the Universal Copyright
Convention (as revised on July 24, 1971). These rights and subject matter
take effect in the relevant jurisdiction in which the License terms are sought to
be enforced according to the corresponding provisions of the implementation
of those treaty provisions in the applicable national law. If the standard suite
of rights granted under applicable copyright law includes additional rights not
granted under this License, such additional rights are deemed to be included
in the License; this License is not intended to restrict the license of any rights
under applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no war-
ranty whatsoever in connection with the Work. Creative Commons will
not be liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special, incidental
or consequential damages arising in connection to this license. Notwith-
standing the foregoing two (2) sentences, if Creative Commons has ex-
pressly identified itself as the Licensor hereunder, it shall have all rights
and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
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the use by either party of the trademark “Creative Commons” or any re-
lated trademark or logo of Creative Commons without the prior written
consent of Creative Commons. Any permitted use will be in compli-
ance with Creative Commons’ then-current trademark usage guidelines,
as may be published on its website or otherwise made available upon
request from time to time. For the avoidance of doubt, this trademark
restriction does not form part of this License.

Creative Commons may be contacted at https://creativecommons.
org/.
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